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Our goal in the present work is to give an insight on some important questions to be asked when
choosing a kriging model for the analysis of numerical experiments. We are especially concerned
about the cases where the size of the design of experiments is small relatively to the algebraic
dimension of the inputs. We first fix the notations and recall some basic properties of kriging.
Then we expose two experimental studies on subjects that are often skipped in the field of com-
puter simulation analysis: the lack of reliability of likelihood maximization with few data, and the
consequences of a trend misspecification. We finally propose a case study, with the application of
an original kriging method where an additive model is used as external trend.

1 Linear predictors for spatial interpolation of numerical simulators

Here we study a deterministic numerical simulator as a function Z : D ⊂ Rd → R, where x ∈ D
is the vector of inputs variables.We denote by X = {x1, ..., xn} the design of experiments and by
Z = {Z(x1), ..., Z(xn)} the set of simulator responses associated with the design of experiments.
Kriging is a class of methods which comes from the field of geostatistics (Matheron (1963), Cressie
(1993)), known as linear optimal prediction in classical statistics. It provides at each point x ∈ D
a prediction Ẑ(x) linearly depending on Z, where the weights depend on the design of experiments
and the kriging model but not on the observations. The way the weights are defined varies as a
function of the type of kriging (Simple : SK; Ordinary : OK; Universal : UK, etc...) and many
parameters such as the trend functions, the covariance kernels and their own parameters (sill,
scales, nugget, etc...) denoted by ψ. In the following, we will concentrate on the parameters of sill
and scales, denoted respectively either by ψ1, ψ2 or by σ2, p. Nevertheless, kriging can always be
seen as an interpolation by a random process, relying on the assumption that:

∀x ∈ D, Z(x) = t(x) + ε(x) (1)

where t is a numerical deterministic function and ε(x) is a path of a centered stationary gaussian
process with known covariance kernel k : h ∈ Rd −→ k(h) ∈ R. t is generally known up to a set of
parameters or a semi-parametric structure to be estimated within kriging.
Several founder works (such as Sacks et al. (1989), Jones et al. (1998)) on the application of kriging
to computer simulations start off with an extremely simplified version of (1). They assume that
the trend is constant (Ordinary Kriging, i.e. t(x) = µ) and that k is a generalized exponential
kernel (see Santner et al. (2003) for instance), letting the stochastic part of (1) account for the
variability of Z. Then the covariance parameters ψ are estimated by maximizing the gaussian
likelihood conditionally to (X,Z). On the other hand, recent approaches (such as Jourdan (2002)
or Martin and Simpson (2005)) try to take advantage of a more complex trend, from linear and
polynomial functions to Fourier series. In other respects, Martin and Simpson (2004) presents an
application of bayesian methods to kriging interpolation (see also O’Hagan (2006) for the bayesian
analysis of computer codes).

2 Fitting covariance parameters by MLE with a small sample

The Maximum Likelihood Estimation method is widely used in kriging to choose covariance pa-
rameters on the basis of the observed data. Following the assumption (1), MLE relies on the
maximization of the density of Z, seen as a function of ψ:

L(ψ;Z) = f(Z/ψ) = (2π)−
n
2 det(Kψ)−

1
2 e−

1
2 (Z−t)T K−1

ψ (Z−t) (2)
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where Kψ is the covariance matrix of Z provided that ψ is the true vector of covariance parameters,
and t is the vector of values of t at X. Obviously, the obtained result ψ̂ = argmaxψ{L(ψ;Z)} is
closely depending on the observed sample Z. The behaviour of ψ̂ relatively to ψ when the sample
varies is a matter of importance. We recall that we are in the case where Z is drawn at random
following a multigaussian distribution with covariance parameters ψ. Then L = L(ψ;Z) becomes
a random function (see Figure 1), and ψ̂ = argmax{L(ψ;Z)} becomes a random vector as well.
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FIGURE 1. Realizations of −2 ln L corresponding to two simulated Z, both with ψ = (5, 0.3) and with
gaussian covariance function; ψ̂ ≈ ψ (left) and ψ̂ 6= ψ (right)

The asymptotic distribution of ψ̂ has been studied in detail within the theory of likelihood, and
leads to the Fisher Information Matrix (FIM) I(ψ):

ψ̂
L−→ N (ψ, I(ψ)−1) where I(ψ) is defined by (I(ψ))ij = E

[
∂ ln(L(ψ;Z))

∂ψi

∂ ln(L(ψ;Z))
∂ψj

]
(3)

The gaussian covariance function is chosen in many computer experiments for its regularity prop-
erties. Covariance parameters are then fitted by MLE; the efficiency and robustness of this method
are rarely discussed. Our concern is to check in what measure the asymptotic results hold with
small samples. To do so, we computed the theoretical FIM of Z:

∀i, j ∈ [1, n] (I(ψ))ij =
1
2
tr

(
K−1

ψ

∂Kψ

∂ψi
K−1

ψ

∂Kψ

∂ψj

)
. (4)

To obtain comparable results for different values of ψ, we introduced a relative inverse FIM:
(J (ψ))ij = (I−1(ψ))ij/(ψiψj). J is in fact the asymptotical covariance matrix of ψ̂

ψ , where the
division is made component by component. We conducted experiments with vectors taken from
simulated monodimensional gaussian processes to compute empirical means and variances of the
ML estimators. For each simulation, we computed covariance parameters estimated by MLE and
the Mean Squared Error (e) between simulated (Z(x)) and interpolated (Ẑ(x)) data:

e =
1
|D|

∫

D

|Z(x)− Ẑ(x)|2dx.

The latter was approximated by taking the average sum of squared errors on a fine grid (i.e. 200
points). We finally collected the averages and variance matrices of the relative values of the esti-
mated covariance parameters, the averages and variances of e, and the covariances between both
of them (the last two indicators are not presented in the following tables) . We focused on gaussian

processes with covariance functions cg(h) = σ2e
−h2

p2 (gaussian) and ce(h) = σ2e−
|h|
p (exponential).

The covariance parameters then were reduced to ψ = (σ2, p) ∈ R?
+ ×R?

+ and the design of experi-
ments X is taken as a regular subdivision of [−1, 1]: Xn+1 = {−1,−1+ 2

n , . . . ,−1+ 2(n−1)
n , 1}(n ∈

N?). We restricted our experiments to the following designs: X5 and X10 with both covariance
functions, ψ1 = σ2 ∈ {5, 10}, and ψ2 = p ∈ {0.3, 0.4, 0.5, 0.6}.
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TABLE 1. MLE and MSE measures on simulated realizations of gaussian processes with gaussian covariance

function, for relative parameters ψrel
i = ψi−ψ̂i

ψi
, i = 1, 2 and for X = X5.

ψ E
[(

ψrel
i

)
i

]
V ar

[(
ψrel

i

)
i

]
asymptotic V ar

[(
ψrel

i

)
i

]
E[e](

5
0.3

) (−0.034
0.018

) (
1.105 0.277
0.277 1.270

) (
0.402 0.071
0.071 2.048

)
4.976

(
5

0.4

) (−0.147
0.042

) (
1.329 0.501
0.501 0.976

) (
0.427 0.111
0.111 0.452

)
3.287

(
5

0.5

) (−0.222
0.033

) (
4.037 0.757
0.757 0.679

) (
0.479 0.131
0.131 0.217

)
1.947

(
5

0.6

) (−0.187
0.027

) (
2.058 0.504
0.504 0.421

) (
0.538 0.135
0.135 0.133

)
0.706

(
10
0.3

) (−0.131
0.006

) (
3.334 0.867
0.867 1.564

) (
0.402 0.071
0.071 2.048

)
10.138

(
10
0.4

) (−0.083
0.106

) (
1.645 0.484
0.484 0.862

) (
0.427 0.111
0.111 0.452

)
6.398

(
10
0.5

) (−0.166
0.024

) (
1.343 0.440
0.440 0.629

) (
0.479 0.131
0.131 0.217

)
3.678

(
10
0.6

) (−0.256
0.012

) (
14.960 0.963
0.963 0.392

) (
0.538 0.135
0.135 0.133

)
1.459

In the case of a gaussian covariance, we observe a negative relative bias 1 (−3.4% to −25.6% of
σ2) in the estimation of ψ1 = σ2. This bias is decreasing with |X| (see table 2 where the negative
relative bias varies between −4.2% and −11.9% ) , which seems in accordance with the asymptotic
unbiasedness of MLE. On the other hand, the relative bias of ψ̂2 has a small order of magnitude
when |X| = 5 (+0.6% to 10.6%) and slightly oscillates around 0 when |X| = 10.
The empirical covariance matrices of the ML estimates offer some surprising results. In particular,
the relative variances of ψ̂1 present huge fluctuations: they vary sometimes of an order of more
than 10 between two samples of 1000 realizations issued from the same process (for instance by

resimulating a GP with ψ = (10, 0.4) and |X| = 5 we obtained V ar
[(

ψrel
i

)
i

]
=

(
43.555 3.242
3.242 0.971

)
) .

Since it is obviously in contradiction with normality (expected in asymptotical conditions) and the
order of magnitude given by (4) (and reported in the 4th column of tables 1 and 2), we analyzed
this phenomenon in detail. First, we observed that the extreme values of V ar[ψ̂1] were caused by
some outliers, highly perturbating the non-robust estimate of variance. Second, a graphical study
of the cloud of ψ̂1s suggested that the distribution is rather log-normal than normal in small-sample
regime. Finally, the comparison with the relative FIM shows that empirical variance of ψ̂1 is clearly
bigger than predicted by the second order Fisher approximation, in particular with the smallest
designs (see Figure 2 for a graphical comparison between theoretical and empirical results as a
function of |X|).
Concerning the relative variances of ψ̂2, the results are much more regular: they decrease mono-
tonically with ψ2 and with |X|, both for the empirical and theoretical quantities. Once again, the
empirical variances tend to match the theoretical variances as |X| grows, even if the first ones
are still typically two times larger than the second ones for a sample of size 10. Nevertheless, the
theoretical Fisher variance has a diverging behaviour as the range becomes small.
In other respects, both tables illustrate some fundamental properties of the mean squared error.
Obviously decreasing with |X|, the MSE is also decreasing with the range ψ2 and linearly increasing
with the variance ψ1. Finally, we quantified the linear dependence between the underestimation of
both covariance parameters by MLE and the MSE (not in the tables). It is worth noticing that
ψ1 and ψ2 play drastically different roles here: it seems that a bad estimation of ψ1 is weakly
correlated with the MSE. This result seems natural when considering that the OK predictor is
not depending on the process variance (see Cressie (1993)). Conversely, the correlation between
the MSE and the relative MLE error on ψ2 is significantly positive: it varies between 40.1% and
55.7% when |X| = 5 and between 15% and 62.5% when |X| = 10. This coincides with our previous
qualitatives observations of bigger MSE when the range is much underestimated.

1Mind the fact that by negative relative bias we understood an overestimation of ψ.
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TABLE 2. MLE and MSE measures on simulated realizations of gaussian processes with gaussian covariance

function, for relative parameters ψrel
i = ψi−ψ̂i

ψi
, i = 1, 2 and for X = X10.

ψ E
[(

ψrel
i

)
i

]
V ar

[(
ψrel

i

)
i

]
asymptotic V ar

[(
ψrel

i

)
i

]
E[e](

5
0.3

) (−0.054
0.012

) (
0.432 0.105
0.105 0.085

) (
0.297 0.057
0.057 0.033

)
0.177

(
5

0.4

) (−0.042
−0.019

) (
0.424 0.058
0.058 0.024

) (
0.340 0.044
0.044 0.014

)
0.009

(
5

0.5

) (−0.067
−0.013

) (
0.46 0.051
0.051 0.013

) (
0.362 0.036
0.036 0.008

)
0.0004

(
5

0.6

) (−0.075
−0.007

) (
0.728 0.059
0.059 0.012

) (
0.375 0.032
0.032 0.005

)
4.e-05

(
10
0.3

) (−0.067
0.003

) (
0.432 0.089
0.089 0.079

) (
0.297 0.057
0.057 0.033

)
0.345

(
10
0.4

) (−0.097
0.015

) (
0.495 0.071
0.071 0.028

) (
0.340 0.044
0.044 0.014

)
0.03

(
10
0.5

) ( −0.06
−0.009

) (
0.491 0.046
0.046 0.011

) (
0.362 0.036
0.036 0.008

)
0.0008

(
10
0.6

) (−0.119
−0.009

) (
0.582 0.05
0.05 0.011

) (
0.375 0.032
0.032 0.005

)
0.0001

A similar study with exponential covariance function gave very different results both for the bias
and the variances of ML estimates (the corresponding tables are not presented here). Indeed,
we observed very regular variances of ML estimates while the bias reached impressive orders of
magnitude. However, the behaviour of the MSE and the correlations between MSE and relative
MLE errors followed the same sketch as in the gaussian case.
To sum up this part about ML estimation:

• Fisher’s asymptotical results must be applied with much care in non-asymptotical conditions.

• More precisely, the distribution of the estimated range parameter is asymmetrical when n is
very small and quickly stabilize to a gaussian when n increases (from 5 to 13).

• On the other hand, the distribution of the estimated variance parameter has a very large
right tail but its shape is far from being gaussian when n is very small. Furthermore, this
results still holds when n increases (from 5 to 13) and we guess that the asymptotical regime
only starts for larger values of n.

Now we wish to examine another difficulty encountered when kriging with few data: the selection
and the estimation of deterministic trends.

3 Kriging with trends: a bless or a curse?

The most commonly used kriging methods are simple and ordinary kriging. However, they reach
their limits when the stationarity assumption does not hold any longer, i.e. when non constant
trends t(x) are impossible to ignore.
In this case, we are back to the general decomposition of (1), where Z is assumed to be the sum of
a deterministic trend t and a centered gaussian process ε. At this stage, we may consider several
subcases. If t is known and ε is to be estimated, a straightforward solution is to perform simple
kriging of the residuals {Z(x) − t(x)}. If t is unknown, we distinguish between linear and most
general non-linear frames. The case in which t depends linearly on its parameters and ε has a
kwown structure has been intensively studied: it is well known as universal kriging (UK, Martin
and Simpson (2005)). Indeed, when the covariance parameters ψ are known and the trend is a
linear combination of some known functions fj of the input variables t(x) =

∑p
j=1 βjfj(x), then

the only unknowns are the parameters of the trend βj , and they are estimated by generalized least
squares (GLS):

β̂(ψ2) = (FT R−1
ψ2

F)−1FT R−1
ψ2

Z (5)
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FIGURE 2. Left: Comparison between the experimental law (gray boxplots) and the asymptotic law
(black lines) for the scale parameter for increasing size of the experimental design. The boxplots for the
experimental laws have been done using 1000 simulations, with gaussian covariance function of parameters
ψ = (5, 0.5). For the asymptotic law the median is represented in continuous line and the first and third
quartiles in dashed lines. Right: Comparison between the theoretical and experimental quantiles of the
variance parameter.

where F denotes the evaluation of f(x) = [f1(x), . . . , fp(x)] at the n points of the design X and
Rψ2 = (1/ψ1)Kψ is the correlation matrix of Z.
In practice, however, one has seldom in hand the value of the covariance parameters previous
to performing UK. So one has to estimate a model with linear trend and unknown covariance
parameters ψ (in the following we will also refer to this case as “UK”, like many practitioners
do). Hence ψ and β have to be estimated within kriging. At a first sight, this is likely to create a
circularity problem: on the one hand, one needs a known trend to work on the residuals and thus
estimate ψ. On the other hand, estimating t without taking the residual into account may lead
to unadapted trends (the estimation of the parameters of the trend would be done by Ordinary
Least Squares instead of GLS). Fortunately, the ML estimation gives a way to escape this vicious
circle in the linear case. Assuming, like in section 2 that the covariance parameters to be estimated
are ψ = (σ2, p), and using the MLE method (and the same formula (5) for β̂), we obtain a
straightforward formula for σ̂2:

σ̂2(ψ2) = (1/n)(Z− Fβ̂)T R−1
ψ2

(Z− Fβ̂). (6)

By injecting (5) and (6) in the expression of the likelihood, we obtain a function L(ψ2, σ̂2(ψ2), β̂(ψ2))
which clearly depends on one single parameter ψ2 and which has to be maximized to get ψ̂2.
In both those cases we obtain the same form of the kriging predictor

Ẑ(x) = fT (x)β̂ + rT (x)R−1

ψ̂2
(Z− Fβ̂). (7)

where r(x) is a vector representing the correlation between an unknown point x and the design X.
We will see in the next part that no such simple solving can be done in most general non-linear
cases. Now we would like to go one step deeper in the application and ask a naive (but complex)
question which has to be handled in practice: how can one come back to a trend from raw data
(X,Z)? As soon as the modelizer finds himself in a situation where neither prior information nor
obvious clue is available, he has indeed to select a trend on the basis of (X,Z). What means does
he have to do so, and what risk does he run in case of a bad choice?
In order to show that the answer to these questions is important let us first perform some ex-
periments. The set-up is the following. A realization of a one dimensional Gaussian process with
known covariance function and parameters is simulated on a regular grid (401 points) on [−1, 1]
and a affine trend (of the form a+ bx) is added; those are the data (X, Z). From this set we chose
a subset of 5 regularly distributed points and we perform three types of kriging : OK, UK with
linear trend and UK with quadratic trend (of the form a + bx + cx2). Due to the fact that the
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points were taken regularly on the grid all the three kriging give similar good results, even if in
two (OK and UK with quadratic trend) of the three cases the trend was misspecified. This may
lead to the conclusion that specifying the trend is not very important and we could obtain good
results using OK. But if we perform the same krigings on different designs, where there are few
points concentrated either on the boundaries or in the center of the domain, then the results are
very bad (due to the ratio between the parameter ψ2 and the subdivision length) when the trend
is misspecified, see Figure 3. They are even worse if we use the kriging predictor given by OK or
by UK with quadratic trend in extrapolation, see Figure 4 here after. (The covariance parameters
used for the simulated process in Figures 3 and 4 are ψ = (5, 0.2).)
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FIGURE 3. OK on a regular grid (left), on a grid concentrated on the boundaries (middle); on a grid
concentrated in the center of the domain (right). The different lines represent the real process, the kriging
predictor and the prediction kriging interval at 95%.
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FIGURE 4. Extrapolation to a [−2, 2] domain by three different kriging methods. The different lines
represent the real process, the kriging predictor and the prediction kriging interval at 95%.

In the one dimensional case the choice of the trend doesn’t seem to be essential while interpolating
data which are not very distant one from another with respect to the frequency of the variation
of the process. On the contrary, when the design is not regular and we are in extrapolation, the
kriging performances are very sensitive to the adequacy between the real trend of the process and
the kriging trend. Hence it is enough to fill the space in order to avoid the risk caused by the choice
of the trend. But what is possible in one or two dimensions becomes unrealistic with increasing
dimension: a design with only one point at each vertex of a cubic domain [0, 1]d has 2d points, i.e.
1024 points in 10 dimensions and more than a billion points in 30 dimensions (30-d is frequently
encountered in the applications). As we usually dispose of 10 data per dimension (which is already
an optimistic case) the data based choice of the trend is a very difficult task.
Let us see nevertheless what it would be possible in order to choose the trend starting from a data
set (X, Z):
The classical frame of linear regression offers a panel of diagnostic tools dedicated to validating
both assumptions on the trends and on the model of residuals. For instance, commonly used in-
dicators include R2 (and R2 adjusted), the F-ratio and the p-values for each estimated regression
coefficients, and numerous criteria to check the adequacy of the residuals to the underlying model.
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In most cases the gaussian likelihood of the residuals is considered among the relevant criteria of
model selection (some model testing techniques or even based upon it).

Now it seems necessary to recall that the latter measures are exclusively done at the design of
experiments, also called “training sample” or “learning sets” in the literature of statistical learning
(see Hastie et al. (2001)). Selecting only on the basis of a R2 fit would lead for instance to the
systematic choice of models interpolating (X, Z). However such models are not meant to be good
in prediction outside the design of experiments. This warning leads to the double message:

• model complexity must be taken into account in selection procedures

• testing the model at some points not used in the model fitting could be worth: this is for
instance what cross-validation does.

The following experiment was performed in an intent to illustrate the first point. The second point
will be illustrated in the next section.
Here we investigate on a simple case how trend selection may be misleading when likelihood is the
only criterion (without any consideration of model complexity). To do so, we compute, for each
trend form of the kriging model, the optimal parameter p̂ by ML, we compare the corresponding
values of the likelihoods and we select the kriging model having the highest value of likelihood. We
compare in the next table three kriging models (OK, UK with linear trend, UK with quadratic
trend) for three different processes: a realization of a one dimensional Gaussian process with 11
points and with Gaussian covariance function (of parameters ψ = (5, 0.4)), the same realization
plus a linear trend (equal to 0.5 + 5x) and the same realization plus a quadratic trend (equal to
0.5 + 5x + 5x2).

TABLE 3. Comparison of minimum values of −2 log(L) for different processes:

GP GP +linear t GP+quadratic t
kriging type p̂ −2 ln(L(p̂)) p̂ −2 ln(L(p̂)) p̂ −2 ln(L(p̂))
OK 0.4082 32.07 0.4445 36.90 0.4595 38.80
UK, linear t 0.4085 31.89 0.4085 31.89 0.4387 35.80
UK, quadratic t 0.4084 31.89 0.4084 31.89 0.4084 31.89

Here it is essential to point out that the likelihood values are necessarily larger when a model is
applied with more degrees of freedom (which happens for instance between a first order and a sec-
ond order polynomial trend), and hence L will always increase (decreasing values of −2 ln(L(p̂)))
with the complexity of the model. (What we could really compare are maximum values of the
likelihood with the same number of degrees of freedom.) On the last line of Table 3, in the cases
of the process without trend (GP) and of the process with linear trend (GP +linear t) for which
we compute the optimal likelihood, the estimated values β̂ are very close to zero, hence one of
the best kriging predictors in the neighbourhood the 11 points, but which will perform badly in
extrapolation.

Kriging with external trend (see Cressie (1993)) seems to constitute a good alternative for solving
both the problem of the “general” form of trend and the one of the circularity. However it raises
other problems such as providing no uncertainty in estimation, and hence preventing from having
a global view of model uncertainty.

4 On the use of additive models as external drift

Linear models are often used by practitioners of quantitative disciplines since they are simple to
interprete and to assess. Additive models (AM ) are an extension of linear models. A description
of this method can be found in Hastie and Tibshirani (1991). The advantage of AM is to conserve
the feature of non-interacting predictors, but they allow much more flexible inference for each
univariate problem, using splines for instance. The generic additive decomposition of Z(x) can be
written in the following way:

Z(x) = Zam(x) + ε where Zam(x) = α +
d∑

j=1

fj(xj) and ε is n.i.i.d. (8)
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and the fjs are arbitrary univariate functions, one for each predictor. Once the nature of the fjs
is chosen (possibly not the same for every dimension), there exist a unique solution, which can be
estimated using a powerful iterative procedure called backfitting algorithm (see Hastie et al. (2001)).

In this section, we propose a combination of additive model and kriging that would offer the great
flexibility of AMs and yet interpolate the data. The most obvious decomposition to achieve such
a model is:

Z(x) = Zam(x) + εSK(x), where εSK is a process like in (1) (9)

This identity seems similar to the equation of Universal Kriging. However in this case, the non-
linear (and even possibly non-parametric) nature of the trend prevents from solving the estimation
globally. Indeed, a likelihood maximization would lead to an optimization problem in infinite
dimension. On the other hand, the backfitting algorithm is not suited anymore if we take the
kriging part into account. Consequently, we develop here a two-step approach: first, the additive
trend Zam(x) is estimated using backfitting algorithm, and then Simple Kriging is applied to the
residuals Z(x) − Zam(x) (and the correlation parameters are given by likelihood maximization).
Unfortunately, there are significant drawbacks in the latter procedure, mainly related to the uncon-
trolled trade-off between determinist and stochastic parts. Hence, the whole uncertainty reduces
here to the kriging variance estimated on the residuals (there is indeed no global uncertainty on
the trend unless we use only splines in the AM ). This is likely to cause an underestimation of the
prediction variance associated to the model. Furthermore, these residuals may be not very well
suited to estimate the gaussian process part: since the additive model is constructed to fit Z accu-
rately on the design of experiments -possibly leading to overfitting-, the residuals may vary with a
small magnitude that would prevent a reasonable generalization outside the design of experiments.

The previous approach is applied to a 3-dimensional industrial case. The data are obtained by
simulation and the numerical response Z is studied as a function of three physical parameters
characterizing the porous media and denoted by X1, X2 and X3. The surface is simulated at the
1331 locations corresponding to a 11-level complete factorial design (denoted by “F” in the sequel).
Our goal is to provide a metamodel of the simulator on the basis of a poor design of experiments.
The metamodel should interpolate the data (to respect the determinism of the underlying simula-
tion) and provide a prediction uncertainty that allows statistical-based exploration (for instance to
solve optimization problems). Furthermore, it should take into account a prior knowledge inherited
from a previous study: the phenomenon is almost additive in its parameters.

Here we present an experimental work we conducted on the industrial case in an intent to identify
and estimate an accurate interpolation metamodel addressing the needs previously exposed, and yet
constructed it with only 11 data per dimension. We took at first a 20-elements Hammersley sequence
(“H”) and then completed it for intermediate validation and re-estimation with 14 additional
points (“A”) taken from a 40-elements D-optimal design. We finally proceeded to a posterior
validation on a 11-level complete factorial design (“F”, with 113 = 1331 elements.). Concerning
the models, we considered isotropic kriging with gaussian covariance and several external drifts:
linear models (first and second order polynomials), and additive models. At first we performed the
2-step procedure explained hereabove: straight linear or additive regression followed by a simple
kriging of the residuals with MLE for the covariance parameters. Some quantitative results are
presented in table 4. Then we proceeded to an intermediate validation on the additional design
“A” and proposed an alternative method for kriging parameters fitting. We finally compared the
different approaches on the biggest design “F”.
A graphical analysis of the coplots on the design “H” (see Figure 5) confirmed the prior belief of
additivity. A first additive decomposition was then estimated using splines. We observed that we
could take a linear trend in the inputs X1, X3 and a non-linear trend in X2 without loosing much
accuracy. Hence, we could try a simplified additive model and considered both sets of additive
components described below (see Figure 5 – right).
Different krigings with external trend were fitted to the observed data of the design “H”. We
focused on four trends : a first and second order regression model and two additive models. The
model “GAM splines” was constructed with splines in all directions, and the model “GAM mixed”
is the one we customized with a spline only in the direction X2 and first order linear trends in the
others directions. For each model, we fitted trend models (respectively by OLS and backfitting)
and measured their relevance using indicators (residuals deviance and p-values when available)
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FIGURE 5. Coplots of Z on the Hammersley design (left) and summary of the additive components and
the residuals given by the backfitting algorithm within GAM estimation (right).

computed with the residuals at the design “H”. Then we fitted a kriging model to the residuals, as
explained earlier. For each kriging model, we stored the maximum reached value of the likelihood
and the corresponding range and variance values. The results are listed in Table 4.

TABLE 4. Estimated model parameter and loglikelihood obtained by detrended kriging

Model Loglikelihood Range σ2 R2
adj R2 p-value

1st order Linear + SK -276.46 1.04 1.36 e+11 0.78 0.82 4.03e-06
2st order Linear + SK -255.34 0.048 7.19e+09 0.97 0.98 6.44e-08

GAM splines + SK -230.67 0.048 6.1e+08 - 0.99 -
GAM mixed +SK -235.28 0.16 9.67e+08 - 0.99 -

These results support the belief that a general additive trend is adapted for these data: both the
variance of residuals and the values of their likelihood (compared to the 2nd order linear model,
which uses more degrees of freedom) indicate their good fit to the data.

In practice, however, we care more about the model’s abilities to make correct predictions outside
the design of experiments than about its mean squared error at X. Hence, model validation should
not be blindly supported by the indicator R2 or the likelihood of the residuals at X. First, we
should consider the number of degrees of freedom of the model. Second, it may be worth validat-
ing the model outside the design of experiments. Indeed, the residuals drawn from Figure 6 were
computed in the same locations as those used to fit the model.

Concerning the first point, we compared the degrees of freedom of both “2nd order linear” and
“GAM mixed”: respectively 7 and 6. Concerning the second point, we conducted a validation test
on some additional data, inspired by the cross-validation procedure. In order to valid the adjusted
trend it seemed to us meaningful to make the comparison of the trend and the real response
outside of the design of experiments. Hence, the design “A” was used to valid (and then update)
the parameters associated to the model fitted at X. The 14 locations of this design were used
to test the validity of the covariance parameters previously found by MLE. Figure 6 shows the
residuals ε = Z − Zam standardized by the MLE variance and the variation of the MSE as a
function of the scale parameter p. We recall that the residuals must satisfy the assumption of
normality in order to get relevant kriging variances and hence predictions. Figure 6 (left) shows
that the MLE variance hasn’t the right value for the residuals at the design “A” to be compatible
with the model assumptions: [−1.96, 1.96] should be a 95% confidence interval for the standardized
residuals. In other respects, Figure 6 (right) shows that the mean square error at the test design
could be significantly reduced by increasing the range.
After both those observations, we decided to re-fit the parameters on the basis of those new
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residuals. Instead of a MLE , we chose at first to exploit the work done to compute the MSE
as a function of the range. We already knew indeed the range that gives the best fit on the
test data: pA = 1.5. Concerning the variance, we obtained satisfying standardized residuals with
σ2

A = 4× σ2
MLE . So we took σ2

A as kriging variance.
Remark: A MLE with these residuals gave σ2 = 5.9× 109 and p = 0.97.
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FIGURE 6. Standardized residuals plot on the validation design and evolution of the MSE with respect
to the scale parameter p
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FIGURE 7. Standardized residuals plot on the full design with re-estimated residual variance Validation
of the model on the factorial design 113

We finally tested the 2-step model on the complete design “F” (see Figure 7). The standardized
residuals (with the variance σ2

A) and the MSE as a function of p validated our empirical decisions
made on the basis of the test design “A” (note that MLE on “A” gave also better results than
MLE on “H” but the cross-validating strategy minimizing the MSE at “A” remained the best). To
conclude with, the model investigated performed well in this case study: kriging seems to constitute
a good complement to additive models, in an intent to interpolate data and also possibly explain
a non-additive part. The method we used here allows inference of covariance parameters with
values suited for a correct quantification of uncertainty. This seems encouraging to develop further
“cross-validation-like” methods for the combination Additive model + kriging.



5 Conclusion

We observed in a 1-dimensional frame that MLE could behave very differently from Fisher asymp-
totical results when n is small. This result have to be kept in mind when dealing with higher
dimensions, and further studies should be done in this latter context.
Further experiments on the topic of trend selection illustrated the fact that the likelihood cannot
be considered as only criterion when comparing different functional families. This is suggesting
methods penalizing complexity (like in AIC and BIC). But we mainly wish to emphazise on the
risks took when predicting with trended kriging: in higher dimensions, we will allways be in an
extrapolation situation. Choosing a trend with the help of a small design then seems very risky.
This is an argument to consider ordinary kriging in the cases where no prior information on the
trend is available.
In other respects, we proposed a model combining an additive model and simple kriging. The
application to an industrial case confirmed that directly kriging the residuals by MLE gives a poor
result. Our attempt to adapt a method inspired by cross-validation with a single test set gave here
a kriging with different features from MLE, apparently accounting well for the non-additive part
of the response. However, the question of the robustness to a change of design has not been raised
yet. This is a subject to be treated in further works.
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