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Kriging was first introduced in the field of geostatistics. Nowadays, it is widely used to model 
computer experiments (Sacks, 1989). As an interpolation method, it translates the fact that the 
results of deterministic computer experiments have no experimental variability. Kriging is also 
used because it allows quantifying the prediction uncertainty which plays a major role in many 
applications (Jones, 1998, Oakley, 2004). Among practitioners we can distinguish those who 
use Universal Kriging where the parameters of the model are estimated (by maximum 
likelihood for example) and those who use Bayesian Kriging (Goria, 2004, Martin, 2004, 
Oakley, 2004) where model parameters are random variables.  
The aim of this paper is to show that the prediction uncertainty has a correct interpretation only 
in the case of Bayesian Kriging. Different cases of prior distribution have been studied. 
Especially, in a specific case of prior distribution, Bayesian Kriging supplies an interpretation as 
a conditional variance for the prediction variance provided by Universal Kriging. Finally, we 
show on a simple petroleum engineering example the importance of prior information in the 
Bayesian approach. 
 
 
1 Prediction uncertainty in Universal Kriging 
 
Let D be included in , 1kR k ≥ . We suppose that the output y is a function of x D∈ . We assume 

that y is the realization of a Gaussian random field ( )( )
x D

Y x
∈

 such that: 

( )( ) ( )E Y x f x β=        (1) 

and ( ) ( )( ) ( )2, |Cov Y x Y x h R hσ θ+ =      (2) 

where ( ) ( )( 0f x f x=  … ( ))T

pf x is a known trend vector, ( 0β β=  ... )T

pβ  is the vector of 

trend coefficients, and ( 0θ θ=  ... )T

pθ  is the vector of correlation coefficients. 

Note that we have used the Gaussian spatial correlation function for the examples of sections 2 
and 3. This choice supposes a very smooth and infinitely differentiable surface. Depending on 
the characteristics of the studied response, other correlation functions such as spherical or 
exponential ones could be used. 

Furthermore, let ( 1Y y=  ... )T
ny  be the output observed at locations ( 1X x=  ... )T

nx .  

 
In the case where all the parameters of the model are known (trend, range and variance), the 

kriging predictor, also called simple Kriging ( )0SKY x , and the prediction variance ( )2
0SK xσ  at a 

new location x0 are given by (Santner, 2003):  

( ) ( )0 0SKY x f x β=  + ( )1Tr R Y Fθ θ β− −      (3) 

and ( ) ( )2 2 1
0 1 T

SK x r R rθ θ θσ σ −= −      (4) 

where  

( )( )
,

|i j
i j

R R x xθ θ= −        (5) 
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( ) ( )( )0 1 0, ,T
nr R x x R x xθ θ θ= …     (6) 

( )

( )

1

n

f x

F

f x

 
 =  
 
 

⋮       (7) 

Here, from the theoretical point of view, the predictor and its variance can be interpreted as the 
expectation and the variance of ( )0Y x  conditional to the observations. 

 
However in practice the parameters of the external trend and/or those of the covariance function 
are not known. They are usually estimated through the optimization of a criterion, like 
maximum likelihood or cross validation. The kriging predictor ( )0UKY x , called Universal 

Kriging, and its prediction variance ( )2
0UK xσ  are then modified to take into account parameter 

estimation. Their expressions are the following: 

( ) ( )0 0
ˆ

UKY x f x β=  + ( )1
ˆ ˆ

ˆTr R Y Fθ θ β− −      (8) 

and ( ) (2 2 1
ˆ ˆ ˆ0 ˆ 1 T

UK x r R rθ θ θσ σ −= − + ( )( )( ) ( )( )11 1 1
ˆ ˆ ˆ ˆ ˆ0 0 )

TT T Tf x r R F F R F f x r R Fθ θ θ θ θ

−− − −− −  (9) 

Using maximum likelihood estimation, one obtains:  

( ) 11 1
ˆ ˆ

ˆ T T
ML F R F F R Yθ θβ

−− −=      (10) 

( ) ( )1
ˆ2

ˆ ˆ
ˆ

( 1)

T

ML

Y F R Y F

n p
θβ β

σ
−− −

=
− +

    (11) 

ˆ arg min(
2ML

nθ = + 2ˆlog(2 )
2

n πσ + ( )( )1
log det

2
Rθ    (12) 

It can be noted that ( )0UKY x  of expression (8) is obtained by substituting β  by its estimation in 

(3). Besides, variance of Universal Kriging (9) is larger than variance of Simple Kriging (4) 
since it includes uncertainty on β . Unfortunately expressions (8) and (9) cannot be interpreted 

as conditional expectation and variance. Indeed, the probability law of θ̂  is not known, 

consequently that is the same for β̂  and 2σ̂  which expressions depend on θ̂ . Besides, 
expression (9) does neither consider uncertainty due to covariance parameters estimation nor to 
variance estimation.  

In the following part, we show that the Bayesian context allows interpreting ( )2
0UK xσ  as a 

conditional variance.  
 
 
2 The Bayesian approach to interpret Universal Kriging’s prediction 
variance  
 
This section will be illustrated with the set of data of Martin and Simpson, 2004, in which the 
output is the temperature of a chemical reaction (Figure 1). The mass ratio of oxidant to fuel 
being burned (the input) is increased from no oxidant to an excess of oxidant. In this process, 
the reaction increases in temperature to a maximum and then decreases as excess of oxidant is 
added. The output is observed on 11 regularly distributed values on the interval [0,1]. 
 

From here, we will assume that ( )( )2| , ,
x D

Y x β σ θ
∈

 is a Gaussian random field such that 

expectation and spatial covariance function are equal to ( )f x β  and ( )2 . |Rσ θ  respectively. 

Moreover, model parameters are considered random which prior joint density denoted by π. 
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In this Bayesian context, the predicted value at any point x  of domain D  and the prediction 
variance are simply given by the expectation and the variance of the output conditionally to the 

observations, i.e. ( )( )|E Y x Y  and ( )( )var |Y x Y . 

 
FIGURE 1 data set. 

 
The Bayesian rules give the following general expression for any function g: 

( )( )( ) ( )( )( ) ( )
2

2 2 2| | , , , , , |E g Y x Y E g Y x Y Y d d d
βσ θ

β σ θ π β σ θ β σ θ= ∫∫∫   (13) 

The conditional variance, the conditional density etc. derive from this formula. 

In the right term of expression (13) one can recognize the Simple Kriging: ( ) 2| , , ,Y x Y β σ θ    is 

indeed a Gaussian random variable with mean ( )SKY x  and variance ( )2
SK xσ . 

 
a. Known variance, known correlation parameters and conjugate prior for trend 

parameters. 
 
This case is interesting because analytical calculations can be conducted when the prior law of 
trend parameters is assumed to be Gaussian. 
Let β  be a Gaussian random vector with mean µ  and variance λΣ , where λ is a positive 

scalar and Σ  is a symmetric definite positive matrix. The posterior distribution of β  is also 
Gaussian with the following parameters: 

( ) (T TE Y F F Fβ µ λ λ= + Σ Σ + ) ( )12R Y Fθσ µ
−

−    (14) 

( ) (2 T TVar Y F F Fβ λ λ λ= Σ − Σ Σ + ) 12R Fθσ
−

Σ                                           (15) 

As mentioned before, ( )0 ,Y
Y x β  is Gaussian with the same parameters as the Simple Kriging:  

( )( ) ( ) 1
0 0, ( )TE Y x Y f x r R Fθ θβ β−= −  + 1Tr R Yθ θ

−     (16) 

( )( ) ( )2 1
0 , 1 TVar Y x Y r R rθ θ θβ σ −= −                                                                 (17) 

The posterior distribution for the output is also Gaussian: 

( )( ) ( )( ) ((1
0 0

T T TE Y x Y f x r R F F F Fθ θ µ λ−= − + Σ Σ + ) ( ))12R Y Fθσ µ
−

− + 1Tr R Yθ θ
−        (18) 

( )( ) ( )( ) (1 2
0 0

T T TVar Y x Y f x r R F F F Fθ θ λ λ λ− = − Σ − Σ Σ + ) ( )( )12 1
0

TTR F f x r R Fθ θ θσ
− −Γ −


 

  + ( )2 11 Tr R rθ θ θσ −−        (19) 

Two particular cases can be noticed. Firstly, when λ tends to zero, we obtain equations of 
Simple Kriging, (3) and (4).  
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FIGURE 2 Evolution of the expectation (a) and the variance (b) of the posterior distribution of 

β  and of the variance of the posterior distribution of ( ) { }, 0.25( ),0.45( ),0.95( )Y x x c d e∈  

(c,d,e), when the prior distribution is Gaussian with mean m = 2500 and variance λ , 

{ }0 1 2 3 4 5 6 910 ,10 ,10 ,10 ,10 ,10 ,10 ,10λ ∈  

 
Secondly, when λ tends to infinity, the first moments of the posterior distribution of β  tend to 
the expectation and the variance of the maximum likelihood estimator (Figure 2): 

( ) ( ) 11 1 ˆT T
MLE Y F R F F R Yθ θλ

β β
−− −

=+∞
= =    (20) 

( ) ( ) ( )12 1 ˆT
MLVar Y F R F Varθλ

β σ β
−−

=+∞
= =                                     (21) 

Figure 2 (a) and (b) presents the evolution of ( )|E Yβ  and ( )|Var Yβ  with λ varying from 1 to 

109. It can be observed that when the variance is high (non informative prior), the posterior 

distribution is the ML’s one. In such a case, the moments of the posterior distribution of ( )0Y x  

are: 

( )( ) ( )( )1
0 0

ˆT
MLE Y x Y f x r R Fθ θ β−= − + 1Tr R Yθ θ

−      (22) 

( )( ) ( )( )( ) ( )( )12 1 1 1
0 0 0

TT T TVar Y x Y f x r R F F R F f x r R Fθ θ θ θ θσ
−− − −= − −


 + ( )11 Tr R rθ θ θ

− −


 (23) 

This result can be observed on Figure 2 c (resp. d and e) which presents the evolution of 

( )( )0Var Y x Y  with λ for 0 0.25x =  (resp. 0 0.45x =  and 0 0.95x = ). In expression (22) and (23) 

one recognizes the predicted value and the prediction variance supplied by Universal Kriging. 
Hence, Universal Kriging is confounded with Bayesian Kriging in the particular case of an 
uniform prior distribution for β , and when σ2 and θ are constants. This is not the case for other 
prior distributions anymore, as shown in next part. 
 

b. Known correlation parameters and non informative priors for trend and variance 
parameters. 
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This case is interesting because the posterior distributions are centred on the maximum 
likelihood estimators: nevertheless, the prediction variance of Universal Kriging does not 
correspond to a conditional variance. 

Let us define the joint prior density as ( ) 1
,π β α

α
= , where 

2

1α
σ

= . 

Thus, theorical results (Goria,2004) give 

( ) ( ) ( )2, | |Yπ β α φ β σ γ α=     (24) 

In expression (24), φ  is the density of the normal distribution centred on ˆ
MLβ  and with 

variance ( ) 12 1TF R Fσ
−− , and γ  is the density of the gamma distribution with a shape of 

( )1

2

n p− +
 and a scale of 

( )( ) 2

2

ˆ1 MLn p σ− +
. Hence, the mean of this distribution is exactly 

2

1

ˆMLσ
. Thus, in Bayesian context with non informative prior (defined as above), the joint 

posterior distribution of the trend parameters and the variance is centred on the ML estimators, 
that is to say on the same parameters as those used in Universal Kriging. Therefore, it is 
interesting to compare the two approaches into details (Figure 3). 

 
FIGURE 3 Comparison between ( )UKY x  and ( ) ( )( )|BKY x E Y x Y=  (plot (a)) and between 

( )UK xσ  and ( ) ( )( )|BK x Var Y x Yσ =  when the prior is non informative, i.e. 

( ) ( )2
1 1, ,π β α α σα

= = .  

 

One can observe on Figure 3 (a) that ( )UKY x  and ( ) ( )( )|BKY x E Y x Y=  give the same results. 

In this particular case, the Universal Kriging estimator can be interpreted as a conditional 
expectation. Nevertheless, it is not the same for the prediction variance of Universal Kriging 

( )2
UK xσ  which is inferior to Bayesian variance ( ) ( )( )2 |BK x Var Y x Yσ = . This difference is 

mainly explained by the fact that ( )2
UK xσ  takes only into account the uncertainty due to the 

estimation of β  and not the uncertainty due to the one of2σ  .  

Thus, this short example shows that the ( )2
UK xσ  can not be interpreted as a conditional variance 

and that Universal Kriging underestimates uncertainty when it is compared to uncertainty of non 
informative Bayesian Kriging. 
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c. Known correlation parameters and conjugate priors for trend and variance 

parameters. 
 
The aim of this case is to validate the Monte Carlo Markov chain simulations (MCMC), useful 
in practice to get samples from posterior distributions which are not explicitly known (for 
example, when there is a prior distribution on θ ). 

Let the prior distribution be the conjugate prior (Gaussian for β and Gamma for 1/2σ ): 

( )2
12

2

1 1, , ,a aπ β µ σ
σ

   = Ν Σ Γ     
    (27) 

The posterior distribution is then well known (Gaussian for β and Gamma for 1/2σ ): 

( )2
112

22

1 1, , ,Y YY a aπ β µ σ
σ

   = Ν Σ Γ     
   (28) 

where  

( )1 1. T
Y Y F R Yµ µ− −= Σ + Σ  and ( ) 11 1T

Y F R F
−− −Σ = Σ +    (29) 

11 1 2

n
a a= +  and 

11 1

22 2 2

TT T
Y Y YY R Y

a a
µ µ µ µ−− −Σ + − Σ= +   (30) 

The Metropolis Hastings algorithm (Robert, 1996) is used to compute MCMC simulations with 
a Gaussian random walk. 
Table 1 and Figure 4 show that the resulting posterior distributions are closed to the theoretical 
ones. The short difference comes from imprecision of the sampling method. 
Thus, simulations will be used to compute the distribution of the output at any point of the 
domain conditionally to the observations and for every kind of prior distributions, proper or 
improper. Note that the surfaces are generally compared through the first two moments of the 
distribution: posterior expectation and posterior variance. In this Bayesian context, the posterior 
variance includes all sources of uncertainty that comes from the trend, the variance and the 
correlation function.  
 

TABLE 1 Comparison of the parameters of the sample simulated by MCMC and theoretical 
parameters in the case of the conjugate prior. 

 beta 1/sigma2 

µµµµ    Σ  1

2

a
a  1

2
2

a
a

 
prior distribution 

2500 10002 10-5 10-10 

posterior distribution 
Yµ  YΣ  11

22

a
a  11

2
22

a
a

 

Theoretical results 2482 0.22 2.50 10-6 9.61 10-13 
Simulation results (MCMC) 2477 0.23 2.50 10-6 9.17 10-13 
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FIGURE 4 Checking of law adequacy between theoretical posterior distributions and data 

simulated using a MCMC method in the case of the conjugate prior.  

(a) Posterior distribution of 2|β σ  (b) Posterior distribution of 2σ −  
 

d. Prior distribution on ββββ, σσσσ2 and θθθθ 
 
Let us consider the same experimental case as Martin and Simpson, 2004, where the prior is: 

( )3/ 22 2

1 1
, ,π β θ
σ σ

  = 
 

     (31) 

The posterior distributions are here sampled for all model parameters (trend, variance and also 
correlation) using MCMC techniques. The results are validated by a comparison to the posterior 
distributions of Martin and Simpson’s paper. 

 
FIGURE 7 Comparison between Universal Kriging and Bayesian Kriging in the non 

informative case where the prior is ( )2 3
1 1, ,π β θσ σ=  

 
On this example, one can compare Universal Kriging where the model parameters are estimated 
by maximum likelihood and Bayesian Kriging which is a mixture of Kriging models where 
parameters follow the posterior distribution. The left part of the Figure 7, which presents 
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( ) ( )BK UKY x Y x− , shows that estimators are different, especially near the origin of the domain. 

Concerning uncertainty (Figure 7 (b)) standard deviation of Universal Kriging is always smaller 
than the one of Bayesian Kriging. Thus, expectation and variance provided by Universal 
Kriging and Bayesian Kriging are different. In particular, Universal Kriging underestimates 
uncertainty, a result already observed previously. 
 
Another advantage of the Bayesian approach is the assessment of the whole distribution of the 
predicted values. For example, a very asymmetric posterior distribution will not be detected by 
universal approach. 
At the same time, Bayesian Kriging avoids the optimization of the likelihood function which is 
often badly conditioned, especially in high dimension, when little information is available. 
Besides, the difference between approaches increases with dimension. Several works (Oakley 
and O’Hagan, 2004, Goria, 2004) are carried out in this context. However, these authors only 
use “classical” prior distributions: conjugate or non informative. The next part addresses a novel 
way to get prior information. 
 
 
3 Case study: impact of the choice of the prior 
 
A streamlines 3D oil production simulator (namely3DSL®) was used to illustrate the impact of 
the choice of the prior. The inputs we deal with are: two permeability factors (LMULTKZ and 
KRWMAX) and the well’s bottom hole pressure (LBHP). They were transformed to belong to 
the range [-1, 1]. The simulator output is the field oil production (FOPT) after 7000 days. In oil 
industry, managers need to quantify precisely uncertainty which lays on the expected oil 
reserves, before taking any decision on the field’s exploitation. The simulator is then used to 
propagate uncertainty from geophysics parameters (inputs) to the oil production (output). 
Nevertheless, a single run of 3DSL® takes a long time (2.5 CPU time). Consequently, very few 
simulations are available. A surrogate, obtained by Kriging for example, is built and uncertainty 
is propagating through the surrogate, instead of through the simulator itself. 
 
The idea presented here consists in using simplified simulations as they require much less time 
consuming, to derive prior information for Bayesian Kriging. We study the impact of two 
different ways used to degrade simulations. These degraded simulators (Degraded 1) and 
(Degraded 2) use a number of nodes on each stream line ten times smaller than 3DSL®. 
Moreover, some constraints like the actualization of the field pressure are relaxed. The main 
difference between Degraded 1 and Degraded 2 comes from the time step used to do the 
calculus which is more accurate with Degraded 1 than with Degraded 2. 
 
TABLE 3 Correlation between the 3 sets of simulations (3DSL®, Degraded1 and Degraded 2) 

Correlation Coefficient ALL LMULTKZ KRWMAX LBHP 
3DSL®/Degraded 1 0.95 0.61 0.97 0.98 
3DSL®/Degraded 2 0.80 -0.19 0.89 0.91 

Degraded 1/Degraded 2 0.89 0.56 0.96 0.94 
 
In order to compare the simulators a full factorial design at 11 levels in each direction has been 
done. The whole surface contains 1331 points. Table 3 shows that 3DSL® and Degraded 1 are 
highly correlated with a correlation coefficient of 0.95. As expected, Degraded 1 is closer to 
3DSL® than Degraded 2. It can be noticed that the correlation is very good in the directions of 
KRWMAX and LBHP (coefficient higher than 0.97). Figure 8 also shows this accuracy. It is 
not the case in the direction of LMULTKZ with a correlation coefficient of 0.61. Degraded 2 is 
less correlated with 3DSL® than Degraded 1. This can be observed by lower figures in Table 3 
and also on Figure 8, which shows the mean of the response in each direction. Let us focus on 
two points of Figure 8: 

- curve’s level: Degraded 2 seems to be closer to 3DSL® than to Degraded 1, 



 9 

- curve’s variations: Degraded 1 seems to be closer to 3DSL® than to Degraded 2, a 
result which corresponds to the correlation coefficients of Table 3. 
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FIGURE 8 Comparison between 3DSL®, Degraded 1 and Degraded 2 in directions LMULTKZ, 

KRWMAX and LBHP. 
 

 
Figure 9 (left) Comparison of CPU times (3DSL®, Degraded 1, Degraded 2) for the same set of 

simulations (full factorial 33). (right) Zoom in on Degraded 1 and Degraded 2 CPU times. 
 
Regarding CPU time1, Figure 9 exhibits that one run takes around 2.5 CPU time with 3DSL® 
against 0.25 with Degraded 1 and only 0.18 with Degraded 2. Thus, Degraded 1 and Degraded 2 
are quite close to 3DSL® but much less time consuming. These simulators will quickly deliver 
useful information to compute Bayesian Kriging. 
As already mentioned, we want to build a predictive metamodel for 3DSL® in order to 
propagate uncertainty. We limit our study to surrogate obtained by Kriging (Universal or 
Bayesian) estimated using very few runs. The trend of the kriging model will supposed to be 
linear with respect to the factors.2. 
                                                 
1 The CPU time been higly dependant to the hardware, we provide here relative values of the time 
answering of the simulators. 
2 ( )2

0 1 2 3| , , ( )Y x Multkz Krwmax Lbhp Z xβ σ θ β β β β= + + + +  where ( ) ( )2( ), ( ) |Cov Z x Z x h R hσ θ+ =  
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We will compare four different strategies equivalent with respect to CPU time consuming: 
“UK ” the classical one using Universal Kriging on 20 simulations with 

3DSL®,, 
“no info BK” the Bayesian approach using a non informative Kriging on the same 20 

runs, 
“ info 1 BK” the Bayesian approach on 17 simulations with 3DSL® using a prior 

distribution obtained from 24 simulations of “Degraded 1”, 
“ info 2 BK”  the Bayesian approach on 18 simulations with 3DSL® using a prior 

distribution obtained from 24 simulations of “Degraded 2”. 
Indeed, the four strategies almost consume the same amount of CPU time: 41.55 units of time 
for the first two strategies, 39.20 for the third one and 40.36 for the last one. 
 
Note that the non informative law (see § 2b) used to compute strategy “no info BK” is the 
following: 

( ) ( )
, ,

π θ
π β σ θ

σ
=      (32) 

To the best of our knowledge, little information is known about θ. We will use a uniform 
distribution on [0,10]. Longer range would not be coherent with the size of the domain, where 
the maximal estrangement between two points is equal to 2. 
Note also that Bayesian Kriging with the same non informative prior has been computed on the 
24 degraded simulations in order to extract the prior distribution needed by “info 1 BK” and 
“ info 2 BK”.  
 

TABLE 4 Parameters posterior distributions on the 24 runs of Degraded 1 and 2 

  0β  1β  2β  4β  2σ  1θ  2θ  3θ  

E(.|Y) -0.40 -0.23 -0.52 -0.64 2.12 3.57 0.76 2.71 24 runs of 
degraded 1 

Std(.|Y) 0.78 0.57 0.88 0.53 0.88 1.93 0.31 1.30 

E(.|Y) -0.56 0.00 -0.63 -0.58 1.69 2.25 0.48 0.97 24 runs of 
degraded 2 

Std(.|Y) 0.61 0.42 0.68 0.70 0.68 0.78 0.19 0.35 

 
Expectations and variances of posterior distributions obtained on both simulators - Degraded 1 
and Degraded 2 - are summed up in Table 43. There are several differences between these two 

sets of data, especially on 1β , θ  and 2σ : 1β  is equal to zero with Degraded 2 (LMULKZ has 
no influence on FOPT), the range parameters are smaller with Degraded2 and the total variance 
appears also smaller with Degraded 2. 
 
The prior used for “info 1 BK”  (resp. “info 2 BK” ) is centred on parameters shown in the first 

two lines (resp. the last two lines) of Table 4. For example, mean and variance of 2σ  are a 
priori equal to 2.12 and 0.88 in strategy “info 1 BK” , whereas they are equal to 1.69 and 0.68 
in “info 2 BK” . 

Concerning distributions, the Normal law is chosen for β and θ and Lognormal for 2σ . 
 
Table 5 presents the comparison of the four strategies which are evaluated through 4 indicators 
computed on the whole surface of N=1331 points :  

- the Root Mean Square Error: ( )2

1

1 ˆ( ) ( )
N

i i
i

RMSE Fopt x Y x
N =

= −∑  

- the Mean Absolute Error: 
1

1 ˆ( ) ( )
N

i i
i

MAE Fopt x Y x
N =

= −∑  

                                                 
3 Note that the values of parameters are not expressed in the same scale as the output’s one (see Figure 8). 
Actually, data have been centred and reduced before modelling. 
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- the Average Standard Deviation: ( )2
ˆ

1

1 N

iY
i

ASD x
N

σ
=

= ∑  

- and the Probability of exceeding: ( ) ( ) ( )ˆ
ˆ 2

1

1
1

i i iY

N

Fopt x Y x x
i

PR
N σ− >

=

= ∑ . 

 
The RMSE and the MAE are average distances between the real surface composed of 1331 runs 
of 3DSL® and the surface which has been estimated by one of the four strategies.  
The ASD represents the average uncertainty provided by each strategy. 
The Pr is the proportion of the points which are outside the interval: ( ) ( ) ( ) ( )ˆ ˆ

ˆ ˆ2 ; 2
Y Y

Y x x Y x xσ σ − + 
. 

 
TABLE 5 Comparison of the four strategies 

 "UK" "no info BK" "info 1 BK" "info 2 BK" 

RMSE 205 042 204042 166770 223845 
MAE 159 402 143190 125748 171786 
ASD 99457 141573 188411 258394 
Pr 0.40 0.19 0.08 0.04 

 
“info 1 BK”  appears the best strategy. Indeed, its RMSE and its MAE are smaller than those of 
other strategies'. The average uncertainty provided by this strategy is well estimated: the interval 

( ) ( ) ( ) ( )ˆ ˆ
ˆ ˆ2 ; 2

Y Y
Y x x Y x xσ σ − + 

 contains 92% of the output of 3DSL®. Thus, the information that is 

obtained from Degraded 1 and introduced through Bayesian Kriging is useful: the prediction 
surface and its uncertainty are accurate.  
 
We can observe that “info 2 BK”  gives a RMSE and a MAE higher than other strategies. 
“Degraded 2” is quite far from 3DSL®, therefore the introduced information degrades the 
estimation of the surface. The difference between the surfaces obtained by the three Bayesian 
strategies can be observed through the difference of posterior distributions (see Table 6). The 
posterior distribution obtained after using the most degraded simulator (“Degraded 2”) appears 
remarkable: mean of σ2, teta2 and teta3 are smaller in this distribution than in the others. Note 
also that this distribution is less dispersed. 
 

TABLE 6 : Parameters posterior distributions for the three Bayesian strategies 
  beta0 beta1 beta2 beta3 sigma2 teta1 teta2 teta3 

E(.|Y) -0.41 0.19 -0.41 -0.47 1.88 3.74 0.87 3.32 
"info 1 BK" 

Std(.|Y) 0.55 0.30 0.64 0.32 0.40 1.16 0.19 0.88 

E(.|Y) -0.41 0.17 -0.60 -0.21 1.00 2.98 0.70 1.48 
"info 2 BK" 

Std(.|Y) 0.42 0.22 0.51 0.37 0.14 1.21 0.18 0.96 

E(.|Y) -0.50 0.54 0.32 -0.18 2.64 3.54 1.05 4.75 
"no info BK" 

Std(.|Y) 0.99 0.46 1.07 0.41 0.75 1.37 0.25 2.00 

 
What can also be noticed in Table 5 is that “no info BK”  and “UK”  give similar results 
according to RMSE and MAE. Indeed, when the prior is non informative, information used with 
Bayesian Kriging is only given by data. Thus, this case is close to Universal Kriging. However 
the average standard deviation AStD appears very smaller with UK than with BK. Thus, the 

interval ( ) ( ) ( ) ( )ˆ ˆ
ˆ ˆ2 ; 2

Y Y
Y x x Y x xσ σ − +   contains only 60% of the output with UK against 

81% with BK. The uncertainty announced by UK is widely underestimated, especially because 
it does not take into account the uncertainty on correlation parameters. 
One last remark must be added relating to the impact of the design. The good results obtained 
with strategy “info 1 BK”  are not only due to good prior information but also to the impact of 
the design. For example (not presented here in details) it is very strange that the 20 runs design 
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gives worse results than the 17 runs (see Table 7) design with all kind of Kriging methods, 
whereas the former includes the latter. A deeper study is needed here in order to provide a better 
understanding of the phenomenon. 
However, the results mentioned above are still the same, even when the source of variability 
coming from the design is removed. 
 
TABLE 7 Comparison between Universal Kriging and Bayesian Kriging on the 17 runs design 

 UK no info info 1 info 2 

RMSE 175 595 186976 166770 200200 
MAE 132 935 135422 125748 151905 
AStD 136832 199505 188411 281317 

Pr 0.22 0.07 0.08 0.02 
 
 
4 Conclusion 
 
The first aim of this paper is to show that in most cases, prediction variance of Universal 
Kriging can not be interpreted as the variance of the response conditionally to the observations. 
Indeed, it only takes into account the uncertainty induce by the estimation of trend parameters 
and not the one induce by the estimation of variance and correlation parameters. Therefore, it 
underestimates the resulting uncertainty on the response. This result has also been observed in 
the 3D case study. 
The second aim of this paper is to propose different strategies to get informative prior 
information. Experimentations tend to show that Bayesian Kriging gives a good prediction of 
the response and its uncertainty. However, special care must be taken while using this kind of 
prior: as Bayesian Kriging with false prior information can give worse results than Bayesian 
Kriging with a non informative prior. 
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