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Kriging was first introduced in the field of geosstics. Nowadays, it is widely used to model
computer experiments (Sacks, 1989). As an intetipolanethod, it translates the fact that the
results of deterministic computer experiments hawvexperimental variability. Kriging is also
used because it allows quantifying the predictiopeutainty which plays a major role in many
applications (Jones, 1998, Oakley, 2004). Amongtfraners we can distinguish those who
use Universal Kriging where the parameters of thedeh are estimated (by maximum
likelihood for example) and those who use Bayedfaiging (Goria, 2004, Martin, 2004,
Oakley, 2004) where model parameters are randoiables.

The aim of this paper is to show that the predmctiocertainty has a correct interpretation only
in the case of Bayesian Kriging. Different casespabr distribution have been studied.
Especially, in a specific case of prior distributi®ayesian Kriging supplies an interpretation as
a conditional variance for the prediction variamerevided by Universal Kriging. Finally, we
show on a simple petroleum engineering exampleriportance of prior information in the
Bayesian approach.

1 Prediction uncertainty in Universal Kriging

Let D be included irR*,k =1. We suppose that the outpuiss a function ofx D . We assume

thaty is the realization of a Gaussian random fi(é(c(x))xDD such that:

E(Y(x)=f(x)3 1)
and Cov(Y(x),Y(x+h))=c’R(h|6) 2

where f (x)=(f,(x) ... fp(x))T is a known trend vector@=(, ... ,BP)T is the vector of

- L . -
trend coefficients, anﬁz(eo Hp) is the vector of correlation coefficients.

Note that we have used the Gaussian spatial ctorelunction for the examples of sections 2
and 3. This choice supposes a very smooth andtetijirdifferentiable surface. Depending on
the characteristics of the studied response, atberelation functions such as spherical or
exponential ones could be used.

Furthermore, letY=(y, ... y,)" be the output observed at locatiots(x ... x,)" .

In the case where all the parameters of the magekaown (trend, range and variance), the
kriging predictor, also called simple Kriging (%,), and the prediction varianess (x,) at a
new location xare given by (Santner, 2003):

Yo (%) = T (%) B +1a Ry (Y —F B) 3

and g% (%) =02(1—r€TR;lr5) 4)
where

R, =(R(% -x16)) )



5 =(R(%:%) - Ri(x0%)) (6)

F=| @)

f (%)
Here, from the theoretical point of view, the patdi and its variance can be interpreted as the

expectation and the variance\o(xo) conditional to the observations.

However in practice the parameters of the extdreadd and/or those of the covariance function
are not known. They are usually estimated through optimization of a criterion, like

maximum likelihood or cross validation. The krigimyedictor YUK(XO), called Universal

Kriging, and its prediction variance?, (xo) are then modified to take into account parameter
estimation. Their expressions are the following

Yo (%)= T (%) B +r] R (Y - F ) ®)
and iy (%) = 02(1- 7 R;'r, +(1 () -] RF) (FTRF) " ( () -] RF)) (@)
Using maximum likelihood estimation, one obtains:
Bu =(FRIF) FTRY (10
A\T ~
Y-FB) R Y-F
PO k) Al (11)
n-(p+1)
A ...n . n N 1
G =argmin( +Elog(2m2)+EIog(det(Rg)) (12)

It can be noted thaf{, (xo) of expression (8) is obtained by substitutifgby its estimation in

(3). Besides, variance of Universal Kriging (9)lasger than variance of Simple Kriging (4)
since it includes uncertainty ofi . Unfortunately expressions (8) and (9) cannotriterpreted

as conditional expectation and variance. Indeed, grobability law of & is not known,

consequently that is the same fngiL and % which expressions depend o Besides,

expression (9) does neither consider uncertaingytdicovariance parameters estimation nor to
variance estimation.

In the following part, we show that the Bayesiamteat allows interpretings, (%,) as a
conditional variance.

2 The Bayesian approach to interpret Universal Krigng’s prediction
variance

This section will be illustrated with the set oftalaf Martin and Simpson, 2004, in which the
output is the temperature of a chemical reactiaggufé 1). The mass ratio of oxidant to fuel
being burned (the input) is increased from no axida an excess of oxidant. In this process,
the reaction increases in temperature to a maximodnthen decreases as excess of oxidant is
added. The output is observed on 11 regularlyidiged values on the interval [0,1].

From here, we will assume thétﬁ((x)|,6’,a2 ,H)XDD is a Gaussian random field such that

expectation and spatial covariance function areakt f (x) £ and JZR(.|6?) respectively.
Moreover, model parameters are considered randachvpghior joint density denoted by



In this Bayesian context, the predicted value 3t pmint x of domain D and the prediction
variance are simply given by the expectation amdviiriance of the output conditionally to the

observationsi.e. E(Y(x)|Y) andvar(Y(x)Y).
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FIGURE 1 data set.

The Bayesian rules give the following general egpian for any function:
E(g(Y(x)1Y)= m ( (Y(x)1Y.8.0° 9)) n(8 0% 6 Iv)dpdode (13)
ﬁa g
The conditional variance, the conditional denstty derive from this formula.

In the right term of expression (13) one can recthe Simple KrigingY (x)|Y,8,0% .0 is

indeed a Gaussian random variable with m¥gr(x) and variancerg (x).

a. Known variance, known correlation parameters and conjugate prior for trend
parameters.

This case is interesting because analytical cdionls can be conducted when the prior law of
trend parameters is assumed to be Gaussian.
Let B be a Gaussian random vector with meanand variancedZ , where) is a positive

scalar and2 is a symmetric definite positive matrix. The poste distribution of £ is also
Gaussian with the following parameters:

E(BY) =+ ASFT (AFSFT +07R,) (Y - F ) (14)
Var (BIY) =25 - A%5FT (AFSFT +0%R,) F (15)
As mentioned beforeY( )‘Y s is Gaussian with the same parameters as the SKnigieg:
E(Y (%)Y, B)=(f (%) -, R'F)B +1y R'Y (16)
Var (Y (%)Y, 8) = 0* (1- 1 R;'r, (17)

The posterior distribution for the output is alsauSsian:

E(Y(%)Y)=(* (xo)—r;RglF)(m SFT(AFSFT +0%R))(Y-Fu))+ RY  (18)

Var (Y (%)|Y) =(f (xo)—r;RglF)[)lz—AZZFT (AFzFT +02R9)_1FI'}(f (%)-r RF)’
+0° (1—r€T R;lrg) (19)

Two particular cases can be noticed. Firstly, whetends to zero, we obtain equations of
Simple Kriging, (3) and (4).
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FIGURE 2 Evolution of the expectation (a) and theance (b) of the posterior distribution of
B and of the variance of the posterior distributdéry (x), x0{0.25¢),0.45¢ ),0.9%(})
(c,d,e), when the prior distribution is Gaussiathwinean m = 2500 and variande

/m{loo,m 16 16 ,16 10 19 ﬁo

Secondly, whem tends to infinity, the first moments of the pogiedistribution of 5 tend to
the expectation and the variance of the maximugliibod estimator (Figure 2):

e\ i} -
E(AIY),... =(F'R'F) F'RY =4, (20)
Var (BlY),_.. =0* (F'RF) " =var (4, (21)
Figure 2 (a) and (b) presents the evolutiorE¢f3|Y) andVar (B]Y) with A varying from 1 to
10°. It can be observed that when the variance is figim informative prior), the posterior

distribution is the ML’s one. In such a case, thmmants of the posterior distribution Mf(xo)
are:

E(Y(X0)|Y) =(f (XO)_r;R;lF)ﬁML+rg Ry'Y (22)
Var (Y (s)I¥) =0 (£ () - R F ) (FTRF) (£ () - R F) + 1=/ R, )| (23)

This result can be observed on Figure 2 c¢ (respndl e) which presents the evolution of
Var (Y(x0)|Y) with A for x, =0.25 (resp.x, =0.45 and x, = 0.95). In expression (22) and (23)
one recognizes the predicted value and the predistariance supplied by Universal Kriging.

Hence, Universal Kriging is confounded with Bayesiériging in the particular case of an
uniform prior distribution for3 , and whero® and® are constants. This is not the case for other

prior distributions anymore, as shown in next part.

b. Known correlation parameters and non informative priors for trend and variance
parameters.



This case is interesting because the posterioriltiibns are centred on the maximum
likelihood estimators: nevertheless, the predicti@riance of Universal Kriging does not
correspond to a conditional variance.

Let us define the joint prior density ag B,a) = 1 , Wherea = iz :
a o

Thus, theorical results (Goria,2004) give
n(B.alY)=¢(810%)y(a) (24)
In expression (24) is the density of the normal distribution centrea ,BML and with

variance UZ(FTR‘lF)_l, and y is the density of the gamma distribution with aash of

n-(p+1) 2 o

—— 7 and a scale of - Hence, the mean of this distribution is exactly
2 (n-(p+1)da

%. Thus, in Bayesian context with non informativeopr(defined as above), the joint

OmL

posterior distribution of the trend parameters #ravariance is centred on the ML estimators,
that is to say on the same parameters as thoseimséddiversal Kriging. Therefore, it is
interesting to compare the two approaches intald€iigure 3).
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FIGURE 3 Comparison betweefy, (x) and Yg (x) = E(Y(x)[Y) (plot (a)) and between

gk (X) and g (x) = Var (Y(x)|Y) when the prior is non informative, i.e.
I
mp.a)= o= 7).

One can observe on Figure 3 (a) thgt (x) and Yg (x) = E(Y(x) |Y) give the same results.

In this particular case, the Universal Kriging esttor can be interpreted as a conditional
expectation. Nevertheless, it is not the same Herprediction variance of Universal Kriging

b (x) which is inferior to Bayesian varianceg, (x)=Var (Y (x)|Y). This difference is
mainly explained by the fact thatd, (x) takes only into account the uncertainty due to the
estimation of 3 and not the uncertainty due to the oneof

Thus, this short example shows that tifg (x) can not be interpreted as a conditional variance

and that Universal Kriging underestimates uncetyaivhen it is compared to uncertainty of non
informative Bayesian Kriging.



c. Known correlation parameters and conjugate priorsfor trend and variance
parameters.

The aim of this case is to validate the Monte Csterkov chain simulations (MCMC), useful
in practice to get samples from posterior distitmg which are not explicitly known (for
example, when there is a prior distribution &n

Let the prior distribution be the conjugate priGagssian fop and Gamma for 1?):

okl (a1,

The posterior distribution is then well known (Gsias forp and Gamma for 4?):

m B0 =0z ) (2 1, (28)

-1

py =3 (FTRYY +37') and3, = (3 +FTR'F) (29)

where

K YTRY - 1 2 (30)
2

The Metropolis Hastings algorithm (Robert, 1996)s&ed to compute MCMC simulations with

a Gaussian random walk.

Table 1 and Figure 4 show that the resulting pastelistributions are closed to the theoretical

ones. The short difference comes from imprecisiadh® sampling method.

Thus, simulations will be used to compute the ihistion of the output at any point of the

domain conditionally to the observations and foergvkind of prior distributions, proper or

improper. Note that the surfaces are generally @vetpthrough the first two moments of the

distribution: posterior expectation and posteriariance. In this Bayesian context, the posterior

variance includes all sources of uncertainty thmhes from the trend, the variance and the

correlation function.

n
ail—al+5 anda,, =a,+

TABLE 1 Comparison of the parameters of the samjteilated by MCMC and theoretical
parameters in the case of the conjugate prior.

beta 1/sigma?2
a a
prior distribution H > Az Azz
2500 1000° 10° 10™°
a
o 2 2 al/ 2
posterior distribution ¥ Y ) &
Theoretical results 2482 0.22 2.50 10° 9.61 10"
Simulation results (MCMC) 2477 0.23 2.50 10° 9.1710™
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FIGURE 4 Checking of law adequacy between theakgiosterior distributions and data
simulated using a MCMC method in the case of thgugate prior.

(a) Posterior distribution o8| g? (b) Posterior distribution ofr™

d. Prior distribution on B8, ¢ and @

Let us consider the same experimental case asrivartl Simpson, 2004, where the prior is:

1 1
0=

The posterior distributions are here sampled fomaldel parameters (trend, variance and also
correlation) using MCMC techniques. The resultsval@ated by a comparison to the posterior
distributions of Martin and Simpson’s paper.
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FIGURE 7 Comparison between Universal Kriging amydsian Kriging in the non
informative case where the prior)rs(,é’, }/02 ,6?) = }/03

On this example, one can compare Universal Krigihgre the model parameters are estimated
by maximum likelihood and Bayesian Kriging whichdsmixture of Kriging models where
parameters follow the posterior distribution. Thedt Ipart of the Figure 7, which presents



Yak (X) =Yk (x), shows that estimators are different, especiadigrithe origin of the domain.

Concerning uncertainty (Figure 7 (b)) standard agom of Universal Kriging is always smaller
than the one of Bayesian Kriging. Thus, expectatom variance provided by Universal
Kriging and Bayesian Kriging are different. In pamtar, Universal Kriging underestimates
uncertainty, a result already observed previously.

Another advantage of the Bayesian approach isshesament of the whole distribution of the
predicted values. For example, a very asymmetratepimr distribution will not be detected by
universal approach.

At the same time, Bayesian Kriging avoids the op#tion of the likelihood function which is
often badly conditioned, especially in high dimemsiwhen little information is available.
Besides, the difference between approaches in@emgise dimension. Several works (Oakley
and O’Hagan, 2004, Goria, 2004) are carried ouhis context. However, these authors only
use “classical” prior distributions: conjugate annnformative. The next part addresses a novel
way to get prior information.

3 Case study: impact of the choice of the prior

A streamlines 3D oil production simulator (namehg&L5) was used to illustrate the impact of
the choice of the prior. The inputs we deal with:awo permeability factors (LMULTKZ and
KRWMAX) and the well’'s bottom hole pressure (LBHRhey were transformed to belong to
the range [-1, 1]. The simulator output is thediell production (FOPT) after 7000 days. In oil
industry, managers need to quantify precisely unggy which lays on the expected oil
reserves, before taking any decision on the fieéXploitation. The simulator is then used to
propagate uncertainty from geophysics parametenguis) to the oil production (output).
Nevertheless, a single run of 305takes a long time (2.5 CPU time). Consequentlyy few
simulations are available. A surrogate, obtaine&byging for example, is built and uncertainty
IS propagating through the surrogate, insteadroiigh the simulator itself.

The idea presented here consists in using simgldimulations as they require much less time
consuming, to derive prior information for Bayesikrniging. We study the impact of two
different ways used to degrade simulations. Thesgradled simulators (Degraded 1) and
(Degraded 2) use a number of nodes on each stremmtdn times smaller than 3DSL
Moreover, some constraints like the actualizatibrihe field pressure are relaxed. The main
difference between Degraded 1 and Degraded 2 cdrogs the time step used to do the
calculus which is more accurate with Degraded h thith Degraded 2.

TABLE 3 Correlation between the 3 sets of simulai¢3DSI®, Degraded1 and Degraded 2)

Correlation Coefficient ALL LMULTKZ | KRWMAX LBHP
3DSL®/Degraded 1 0.95 0.61 0.97 0.98
3DSL®/Degraded 2 0.80 -0.19 0.89 0.91

Degraded 1/Degraded 2 0.89 0.56 0.96 0.94

In order to compare the simulators a full factodakign at 11 levels in each direction has been
done. The whole surface contains 1331 points. Taldbows that 3DSLand Degraded 1 are
highly correlated with a correlation coefficient @95. As expected, Degraded 1 is closer to
3DSL® than Degraded 2. It can be noticed that the cdioelas very good in the directions of
KRWMAX and LBHP (coefficient higher than 0.97). kig¢ 8 also shows this accuracy. It is
not the case in the direction of LMULTKZ with a oelation coefficient of 0.61. Degraded 2 is
less correlated with 3DSLthan Degraded 1. This can be observed by lowerdgyin Table 3
and also on Figure 8, which shows the mean ofébhpanse in each direction. Let us focus on
two points of Figure 8:

- curve’s level: Degraded 2 seems to be closer toL3Dan to Degraded 1,



curve’s variations: Degraded 1 seems to be clas8DISL® than to Degraded 2, a

result which corresponds to the correlation cogffits of Table 3.
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Figure 9 (left) Comparison of CPU times (30SDegraded 1, Degraded 2) for the same set of
simulations (full factorial . (right) Zoom in on Degraded 1 and Degraded 2 @RIgs.

Regarding CPU tinfe Figure 9 exhibits that one run takes around 22%)@me with 3DSE
against 0.25 with Degraded 1 and only 0.18 withradgd 2. Thus, Degraded 1 and Degraded 2
are quite close to 3DSLbut much less time consuming. These simulatorsquitkly deliver
useful information to compute Bayesian Kriging.

As already mentioned, we want to build a predictimetamodel for 3DSY in order to
propagate uncertainty. We limit our study to suategobtained by Kriging (Universal or
Bayesian) estimated using very few runs. The trainthe kriging model will supposed to be
linear with respect to the factdts.

! The CPU time been higly dependant to the hardweeerovide here relative values of the time
answering of the simulators.

2 Y(x18.0%.6)= B, + BMultkz + BKrwmax + B,Lbhp + Z(x) whereCov(Z(x),Z(x+h)) =a?R(h|6)



We will compare four different strategies equivaleith respect to CPU time consuming:

“UK” the classical one using Universal Kriging on 2ndations with
3DSL®,

“no info BK” the Bayesian approach using a non informativegiig on the same 20
runs,

“info 1 BK” the Bayesian approach on 17 simulations with 3B$ising a prior
distribution obtained from 24 simulations of “Dedeal 1",

“info 2 BK” the Bayesian approach on 18 simulations with BDSising a prior

distribution obtained from 24 simulations of “Dedeal 2.
Indeed, the four strategies almost consume the sanaeint of CPU time: 41.55 units of time
for the first two strategies, 39.20 for the thimkcand 40.36 for the last one.

Note that the non informative law (see 8§ 2b) use@¢dmpute strategyn® info BK” is the
following:

(o

n(B,0.,6) =L (32)
o

To the best of our knowledge, little information kKsown about. We will use a uniform
distribution on [0,10]. Longer range would not @herent with the size of the domain, where
the maximal estrangement between two points islequa
Note also that Bayesian Kriging with the same ndarimative prior has been computed on the
24 degraded simulations in order to extract therpdistribution needed byiriffo 1 BK” and
“info 2 BK”.

TABLE 4 Parameters posterior distributions on thauihs of Degraded 1 and 2

ﬁo :81 ﬁz ﬁ4 0’2 01 ‘92 93
24runsof | E(lY) | 040 023 052 064 | 212 3.57 0.76 271
degraded 1 | gy 1vy | 078 0.57 0.88 0.53 0.88 1.93 0.31 1.30
24runsof | E(lY) | 056 000 063  -0.58 1.69 2.25 0.48 0.97
degraded 2 | gy 1vy | 061 0.42 0.68 0.70 0.68 0.78 0.19 0.35

Expectations and variances of posterior distrimgiobtained on both simulators - Degraded 1
and Degraded 2 - are summed up in TaBléTAere are several differences between these two

sets of data, especially off, & and o°: B, is equal to zero with Degraded 2 (LMULKZ has

no influence on FOPT), the range parameters aresmdth Degraded2 and the total variance
appears also smaller with Degraded 2.

The prior used fotinfo 1 BK” (resp.“info 2 BK” ) is centred on parameters shown in the first

two lines (resp. the last two lines) of Table 4r Esample, mean and variance of area
priori equal to 2.12 and 0.88 in stratejyfo 1 BK” , whereas they are equal to 1.69 and 0.68
in “info 2 BK” .

Concerning distributions, the Normal law is choarp and® and Lognormal foro?.

Table 5 presents the comparison of the four stiegeghich are evaluated through 4 indicators
computed on the whole surface of N=1331 points :

N
- theRootMeanSquareError: RME:\/%Z(FOPI(K)-\?M))Z

i=1

N
- theMeanAbsoluteError: MAE:%Z‘FOPI(K)—?(&)‘
i=1

% Note that the values of parameters are not expaessthe same scale as the output’s one (seee&)ur
Actually, data have been centred and reduced befodelling.
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o 1Y
- theAverageStandardDewatlon.Asozﬁ; /UY?(K)
1 N
- and theProbability of exceedingPR=—Z%Fom(x)_9()q)‘>w(x) .
N = Y

The RMSE and the MAE are average distances bettieereal surface composed of 1331 runs
of 3DSL® and the surface which has been estimated by otredbur strategies.

The ASD represents the average uncertainty proiglehch strategy.

The Pr is the proportion of the points which arésmle the interval{?(x)_zgv(x) ;\?(x)+20YA(x)J-

TABLE 5 Comparison of the four strategies

"UK" "no info BK" "info 1 BK" "info 2 BK"
RMSE 205 042 204042 166770 223845
MAE 159 402 143190 125748 171786
ASD 99457 141573 188411 258394
Pr 0.40 0.19 0.08 0.04

“info 1 BK” appears the best strategy. Indeed, its RMSE andAE are smaller than those of
other strategies'. The average uncertainty provigeithis strategy is well estimated: the interval
[V(x)—Zg?(x);YA(x)+ZaV(x):| contains 92% of the output of 3DSLThus, the information that is

obtained from Degraded 1 and introduced througheBiay Kriging is useful: the prediction
surface and its uncertainty are accurate.

We can observe thdinfo 2 BK” gives a RMSE and a MAE higher than other strategie
“Degraded 2” is quite far from 3DSL therefore the introduced information degrades the
estimation of the surface. The difference betwdwnsurfaces obtained by the three Bayesian
strategies can be observed through the differefqgmsterior distributions (see Table 6). The
posterior distribution obtained after using the trabegraded simulator (“Degraded 2") appears
remarkable: mean af®, teta2 and teta3 are smaller in this distributitzen in the others. Note
also that this distribution is less dispersed.

TABLE 6 : Parameters posterior distributions fog three Bayesian strategies

betal betal beta2 beta3 sigma2 tetal teta2 teta3

vinfo 1 BK" E(]Y) -0.41 0.19 -0.41 -0.47 1.88 3.74 0.87 3.32
Std(.]Y) 0.55 0.30 0.64 0.32 0.40 1.16 0.19 0.88

vinfo 2 BK" E(]Y) -0.41 0.17 -0.60 -0.21 1.00 2.98 0.70 1.48
Std(.]Y) 0.42 0.22 0.51 0.37 0.14 1.21 0.18 0.96

"no info BK" E(]Y) -0.50 0.54 0.32 -0.18 2.64 3.54 1.05 4.75
Std(.]Y) 0.99 0.46 1.07 0.41 0.75 1.37 0.25 2.00

What can also be noticed in Table 5 is thad info BK” and“UK” give similar results
according to RMSE and MAE. Indeed, when the psandn informative, information used with
Bayesian Kriging is only given by data. Thus, ttése is close to Universal Kriging. However
the average standard deviation AStD appears vepllamwith UK than with BK. Thus, the

interval [\?(x)—209(x);\?(x)+ 20'9(X)] contains only 60% of the output with UK against

81% with BK. The uncertainty announced by UK is @idunderestimated, especially because
it does not take into account the uncertainty amedation parameters.

One last remark must be added relating to the itnplathe design. The good results obtained
with strategy‘info 1 BK” are not only due to good prior information butoals the impact of
the design. For example (not presented here inlgeitais very strange that the 20 runs design
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gives worse results than the 17 runs (see Tabke3ign with all kind of Kriging methods,
whereas the former includes the latter. A deepglysis needed here in order to provide a better
understanding of the phenomenon.

However, the results mentioned above are stillsdmme, even when the source of variability
coming from the design is removed.

TABLE 7 Comparison between Universal Kriging and/8sian Kriging on the 17 runs design

UK no info info 1 info 2
RMSE 175 595 186976 166770 200200
MAE 132 935 135422 125748 151905
AStD 136832 199505 188411 281317
Pr 0.22 0.07 0.08 0.02
4 Conclusion

The first aim of this paper is to show that in moases, prediction variance of Universal
Kriging can not be interpreted as the variancehefresponse conditionally to the observations.
Indeed, it only takes into account the uncertainuce by the estimation of trend parameters
and not the one induce by the estimation of vadamd correlation parameters. Therefore, it
underestimates the resulting uncertainty on thparese. This result has also been observed in
the 3D case study.

The second aim of this paper is to propose differgnategies to get informative prior
information. Experimentations tend to show that &agn Kriging gives a good prediction of
the response and its uncertainty. However, speai@ must be taken while using this kind of
prior: as Bayesian Kriging with false prior infortitm can give worse results than Bayesian
Kriging with a non informative prior.
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