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In the study of computer codes, filling space as uniformly as possible is important to describe the complexity of 
the investigated phenomenon. However, this property is not conserved by reducing the dimension. Some 
numeric experiment designs are conceived in this sense as Latin hypercubes or orthogonal arrays, but they 
consider only the projections onto the axes or the coordinate planes. In this article we introduce a statistic which 
allows studying the good distribution of points according to all 1-dimensional projections. By angularly scanning 
the domain, we obtain a radar type representation, allowing the uniformity defects of a design to be identified 
with respect to its projections onto straight lines. The advantages of this new tool are demonstrated on usual 
examples of space-filling designs (SFD) and a global statistic independent of the angle of rotation is studied. 
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1. INTRODUCTION 

 
For over 15 years the theory of experiment designs initiated by Fisher (1926) has 

experienced a revival with its use for the investigation of large-scale industrial computer 

codes. This change in setting has led to at least two major changes. First, the large-scale 

computer codes describe phenomena of an increasing complexity, which implies that the 

corresponding models are often nonlinear and/or nonparametric. Second, the experiment itself 

is different. Numeric experiments are simulations and, except for stochastic codes 

implementing a Monte Carlo-based method, they give the same response for identical 

experimental conditions (including algorithmic and computer-based parameters). Therefore, 

repeating an experiment under the same conditions doesn’t make sense since it doesn’t help in 

acquiring new information. 

In this new setting, the experiment planning methods are therefore different, For example 

when the code is to be remodeled in the scanning phase (before any simulation has been 

realized), one often tries to satisfy the following two requirements. On the one hand, distribute 

the points in the space as uniformly as possible to catch non-linearities; this also allows 

avoiding repetitions. On the other hand, try to make this space filling last by reducing the 

dimension. The first requirement was the starting point of researches in space filling designs 

(SFD). The quality of the spatial distribution is measured either by using deterministic criteria 
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like minimax or maximin distances (Johnson, Moore and Ylvisaker, 1990), or by using 

statistical criteria like discrepancy (Niederreiter, 1987, Hickernell, 1998, Fang, Li, Sudjianto, 

2006). The second requirement stems from the fact that it is frequently observed that the code 

depends only on a few influential variables, which may be either direct factors or “principal 

components” made up of linear combinations of these variables. It is interesting to note that 

dimension reducing techniques like SIR (Li, 1991) or KDR (Fukumizu, Bach, Jordan, 2004) 

allow effectively identifying the space generated by these main directions. It is therefore 

desirable that the space filling property be also satisfied in the projection onto subspaces. This 

idea has motivated the use of Latin hypercubes (LH) and orthogonal arrays (OA) in numeric 

design experiments. With a LH design of the SFD type, one can guarantee a very good 

distribution in the projection onto margins, so that there is no loss of information if the code 

depends on only one variable. SFD type OAs extend this property to the projection onto 

marginal subspaces of higher dimension (see, for example, Koehler and Owen, 1996, and  

more generally, Owen, 1992 or Santner, Williams, Notz, 2003). However, considering only 

the projections onto margins is not sufficient if, for example, the code is a function of a linear 

combination of 2 variables. 

In this article we introduce a statistic built around 1-dimensional projections to test the 

uniformity of an experiment design. The choice of 1 dimension is linked to the difficulty of 

obtaining the theoretical distribution of the projections onto a higher dimensional space. 

However, the advantage of the restriction to 1 dimension is that it offers a simple viewing tool 

based on the principle of a radar. By representing the statistic’s value in all directions, one 

obtains a parameterized curve (or a surface), allowing the uniformity defects of a design to be 

identified with respect to its projections onto straight lines. The article is structured as 

follows. In section 2 we define the new statistic and the associated viewing tool, called 

uniformity radar, and give a few properties. In section 3 we show one application of the radar 

to SFD designs. Section 4 is devoted to an enhancement, where we define a global statistic 

which doesn’t depend on a particular axis of rotation. In section 5 we give some conclusions. 

 

2. UNIFORMITY RADAR 

 

In the investigation of a computer code, let us consider a uniform experiment design on a 

cubic domain [ ]1,1
d

! = "  . Note 1,..., Nx x  the experimental points, and ( )0H  the hypothesis 

" 1,..., Nx x  were generated by independent random drawings according to the uniform 
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distribution in  !  ".  If the computer code depends only on one single main direction, it is 

important that the projections on this axis be distributed in the best possible way. More 

generally, let us denote aL  the straight line generated by the unitary vector ( )1,..., da a a=  of 

! , and aµ  the probability distribution of the projections of 1,..., Nx x  onto aL . Ideally, we 

may therefore expect that in all the directions a the distribution aµ  is uniform. However, this 

is not realistic when aL  is not a coordinate axis. For example, in the case of the cubic domain 

[ ]21,1! , there will be a larger number of projected points in the central part of the axis of 

projection as can be seen in Figure 1.  
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Figure 1. Left : Projections of points onto an axis La. Right : The histogram of the projections. 

 
More specifically, the distribution of the projected points may be subdivided into 3 areas 

defined by the projection of the apexes of the domain. Actually, the distribution aµ  is 

continuous, with probability density represented below. The apexes of the trapezoid 

correspond to the apexes of the square !  projected onto the axis aL , where 

( )cos ,sina ! != . 

 

 
 
 
 
 
 
 
 

 

Figure 2. The distribution of the projections for a 3 dimensional cubic domain. 
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In the general case, the projection onto aL  is a linear combination of independent random 

variables of a uniform distribution, which reduces the calculating of its distribution to a 

traditional problem of probabilities first investigated in the 18th century by Lagrange (see 

discussion in Elias and Shiu (1987)). If we denote ( )1,..., dX X X= , where 1,..., dX X  are 

independent random variables identically distributed following the uniform distribution over 

[ ]1,1! , and Z  the projection of X onto 
a
L , where 0 {1,..., }ja j d! " # , then the distribution 

function of Z is given by : 

! 

FZ (z) =
1

2a jj=1

d

"
# 

$ 
% % 

& 

' 
( ( ) *(s)

(z + s.a)+

d

d!
s+{,1,1}d

-  

where ( ) { }1,..., 1,1
d

ds s s= ! "  are the apexes of the hypercube [ ]1,1 d! = " , 
1

( )
d

j
j

s s!
=

=" , .s a  

is the scalar product of the vectors s and a, and ( ) max( ,0)y y
+
=  the positive part of y. As a 

result, for a given axis, Z  accepts a continuous density in bits whose nodes correspond to  

projections onto the axis of the apexes of the domain. 

It is interesting to note that the distribution of the projections is known in other situations, as 

in the case of a spherical domain : if !  is the unit sphere of Rd, a direct calculation shows that 

aµ  accepts the density ( ) [ ]( )
2

1,1

2
1 1af x x x

! "= " , the distribution function being equal to 

21 1
( ) (Arcsin 1 )

2
aF x x x x

!
= + + "  for [ ]1,1x! " . 

 In sum, for a uniform experiment design to have good distribution properties on the 1- 

dimensional projections, it will be necessary that in all the directions a, the empirical 

distribution of the projections onto 
a
L  is close to their theoretical distribution under the 

hypothesis ( )0H . There exist many distribution adequacy statistics (see D’agostino and 

Stephens, 1986), which allow for a large number of choices to define a criterion adapted for 

this purpose. However, possibilities are limited by special requirements. To start with, it is 

preferable that the statistic’s distribution be known to avoid the approximate calculation of its 

distribution. Furthermore, one would also like the statistic to be distribrution-free, that is, its 

distribution doesn’t depend on the projection direction to have a unique rejection threshold for 

all the angles. Also, for the sake of consistency, it would be desirable for the retained statistic 

to be interpretable in terms of discrepancy when projections are made onto a coordinate axis. 
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Finally, two statistics (at least) correspond to these requirements : the Kolmogorov-Smirnov 

statistic 

 

! 

D
N

(a) = sup ˆ F 
N ,a (z) " F

a
(z)  (1) 

and the Cramér-Von Mises statistic 

 

! 

N"
N

2
(a) = ( ˆ F 

N ,a
(z) # F

a
(z))

2
dz$  (2) 

where ,
ˆ
N a
F  is the empirical distribution function of the projections of 1,..., Nx x  onto 

a
L , and 

aF  the distribution function of aµ . When 
a
L  is a coordinate axis, aµ  is the uniform 

distribution on [0,1] and these statistics correspond, respectively, to the discrepancies L∞ and 

L2 (Niederreiter, 1987). In what follows, we decided to work on the first because the 

conclusions seem equivalent, while the corresponding graphics are a little more readable (see 

section 5). By analogy with the case of coordinate axes, we will talk about a discrepancy of 

projections to designate the Kolmogorov-Smirnov statistic of the formula (1). 

 

The discrepancy of projections provides a viewing tool of the uniformity defects based on 

the projections. This tool is built around the principle of a radar and, for this reason, we 

propose to call it uniformity radar. Its usage varies according to the dimension of the space !  

on which the uniformity of the points are to be verified. In 2 dimensions, the discrepancy of 

projections is calculated in all directions by making an angular scan in ! . Thus, a 

parameterized curve will be obtained, called 2D radar, with an equation in polar coordinates   

( )ND! !a  

defined over [0,2π], allowing a good distribution of the points to be displayed in all directions 

and to decide whether the design is appropriate or not. In 3 dimensions, one calculates the 

discrepancy of the projected onto an axis ,L! "  pivoting around the center of the domain and 

defined in spherical coordinates by an angle !  in longitude and !  in latitude. This time a 

parameterized surface is obtained, called  3D radar, 

( ) ( ), ,ND! " ! "a  

defined over [ ]0,2 ,
2 2

! !
!

" #
$ %& '( )

. In higher dimensions, it is unthinkable to try to make an 

angular scan of the space !  and especially because it becomes impossible to represent the 

result graphically (although the calculation is still possible). However, the hypothesis (H0) 
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remains valid on 2- and 3-dimensional coordinate spaces.  Therefore, uniformity radar may be 

applied to all pairs and/or triplets of possible dimensions. 

In practice, the quality of the representation can be degraded by discretization. Here it can 

be shown that the 2D and 3D radars are continuous applications. But ND  is not differentiable 

on all the axes 
a
L  so that at least two points of !  are projected onto the same point, which 

explains why there are many visible breaks in the graphics of the next sections. 

 
 

3. APPLICATIONS OF UNIFORMITY RADAR  

 

In this section we present an example to focus on the interest of uniformity radar for testing 

the good distribution of experimental points in projection. As required by the scope of 

application, we refer to cases where the hypothesis ( )0H  of a uniform distribution in the 

experimental domain is plausible. For each representation of the uniformity radar we have 

added the circle (or the sphere) of radius ks equal to the statistic of the Kolmogorov-Smirnov 

test associated with a level of confidence at 95%. Recall that since the statistic is distribution 

free, ks doesn’t depend on a. This provides a decision-making element or, at least, a means of 

comparison with the random designs obtained by a uniform drawing. Should the studied 

design be stochastic (pseudorandom, Latin hypercubes or randomized orthogonal arrays), the 

graph displays the directions a along which the hypothesis ( )0H  is rejected. If the studied 

design is deterministic (due to low discrepancy), we are no longer in the usual scope of 

application of the test. If one of the values of ( )
N
D a  is greater than ks, then we can only say 

that the investigated design is less good than a random design in the sense where the 

probability that a random design has a better discrepancy exceeds 95%. The following 

examples apply essentially to those cases because we preferred known SFD designs without 

transforming them. Nonetheless, in practice, it would suffice to apply randomization or  

scrambling (see, for example, Fang, Li, Sudjianto, 2006) to return to the usual application 

conditions of statistics tests. 

 
Example 1 : Detection of holes in 15-dimensional Halton sequences using 2D radar. We 

consider the first 250 points of a 15-dimensional Halton sequence of low discrepancy (1960). 

Since the design is a high dimensional design, we apply the radar to all pairs of possible 
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dimensions. Among the rejected pairs we have, for example, the pair (14,15), which may be 

viewed on Figure 3. 
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Figure 3. Left : The design (X14,X15) of a Halton sequence. Right : The curve obtained using radar. 

 

In this example, since there exist values of ( )
N
D a  outside the circle of radius ks, the 

uniformity radar detects the bad uniform distribution in the design ( )14 15,X X . The largest 

deviation in the uniformity is observed in direction a associated with an angle of 

approximately 135°, corresponding here to the direction orthogonal to the visible alignments 

on the figure to the left. Here we find ourselves faced with the well-known defect of high-

dimensional Halton sequences, which do not preserve a low discrepancy in projection 

(Thiémard (2000), Morokoff, Caflisch (1994)). It is interesting to note, however, that the 

radar is not designed to systematically detect the directions of alignment. 

 
 

4. A GLOBAL STATISTIC FOR 2D RADAR 

 

Example 2. Toward an extension of the uniformity radar. Let us consider the first 100  

points of an 8-dimensional Halton sequence projected onto the subspace formed by( )3 6,X X .  

X15 

X14 Uniformity radar 

ks≈0,09 
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Figure 4. The first 100 terms of an 8-dimensional Halton sequence projected onto ( )3 6,X X . 

 
We note that all the points of the uniformity radar are inside the circle of radius ks and, as a 

result, the radar accepts the plane although we can see that the points of the plane ( )3 6,X X  

are not uniformly distributed. However, the discrepancy values are rather scattered with a low 

value for angle θ = 0°, and rather high values, for example, for angle 29! = ° , which seems to 

correspond to the orthogonal direction of alignments. The idea to reject this type of design 

amounts, therefore, to defining a new statistic which introduces minimum and maximum 

discrepancies. In order to avoid scale problems, we suggest taking the ratio of these quantities. 

We have:  

 

 [ ]

[ ]

0,2

0,2

sup ( )

inf ( )

N

N

N

D

G
D

! "

! "

!

!

#

#

=  (3) 

 

This statistic should allow rejecting designs which have a bad distribution in one direction 

compared to a direction where the points will be uniformly distributed. This statistic has the 

advantage of being global, that is, only its value allows accepting or rejecting a design, while 

up to now a statistic test was available for each value of ! , which may be criticizable at the 

decision-making level. For a fixed value of N, the distribution of NG  seems difficult to obtain 

other than by simulation. For a 100 points design, we obtain a threshold equal to 4.23 at a 

95% level. In the case of example 2, the observed value of the statistic NG  is equal to 6.07, 

which allows very clearly deciding to reject this design.  

 

6
X  

3
X  
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5. CONCLUSION 

 
Due to the complexity of the phenomena described by large-scale computer codes, it is 

preferable to distribute numeric experiments as uniformly as possible in the domain. In 

addition, the distribution should also be satisfactory in projections onto subspaces in case the 

code would depend only on a small number of factors or main components. In this article we 

introduced a statistical criterion to allow generalizing the use of the discrepancy L∞ to 

projections onto all the 1-dimensional subspaces. This criterion is called uniformity radar 

because it allows graphically testing in 2 and 3 dimensions the uniformity hypothesis of the 

design plane by scanning in all directions. We also introduced a global statistic in 2 

dimensions to help reject unsatisfactory designs which are still accepted by the uniformity 

radar.  

The interest of these criteria was studied on usual SFD designs. In these examples (only 

one is presented here), the uniformity radar was able to detect the main defects of these 

designs, including some with a very bad behavior in projection, such as the 15-dimensional 

sequence with low discrepancy in example 1. It is obviously not enough to check the 1-

dimensional projections for the detection of detects in higher dimensions. The radar can 

succeed when there is a rectangular shaped empty area in the domain, as in the 

aforementioned example. In such a case, the distribution of the points is bad when the points 

are projected onto the rectangle’s width. It can also detect the alignments of points, but cannot 

detect them if the directions of alignments are well distributed such as with the factorial 

design. This underscores the lack of power of the Kolmogorov-Smirnov test when the sample 

is generated in reality from a continuous distribution supported by the union of small intervals 

regularly distributed. In practice, this situation is not very detrimental because the SFD 

experiment designs obtained by a deterministic process are often randomized or scrambled 

(see, for example,  Fang, Li and Sudjianto, 2006). 

The uniformity radar may be adapted to other distribution adequacy statistics, such as the 

Cramér-Von Mises statistic (see section 2), which corresponds to the discrepancy L2, for a 

projection onto a coordinate axis. For example, we repeated the examples with the 

corresponding radar. As expected, the conclusions are exactly the same because the 

Kolmogorov-Smirnov and Cramér-Von Mises tests do not present any clear-cut difference in 

terms of power. The main difference is graphic: the curve of the radar defined with the 

Cramér-Von Mises statistic is smoother, which is due to the norm L2, and introduces 
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sometimes large scale variations from one plane to another, while these differences are 

attenuated by the norm L∞ in the examples given here. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Uniformity radar with the Cramér-Von Mises statistic for examples 1 and  2. 
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