

Probabilités et Statistiques

Année 2009/2010

laurent.carraro@telecom-st-etienne.fr olivier.roustant@emse.fr

Cours n°5

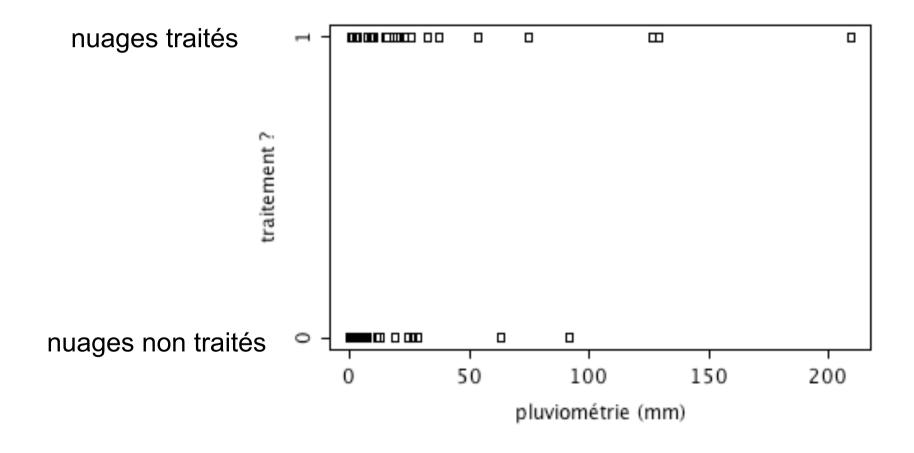
Statistique exploratoire

Plan

- > Un problème : un traitement est-il efficace ?
- > Des données aux probabilités : modélisation
- > Statistiques descriptives
 - Indicateurs chiffrés
 - Outils de visualisation : fonction de répartition empirique, histogramme, boxplot (boîtes à moustaches!), estimation non paramétrique d'une densité
 - Comparaison à une transformation affine près : qqplot, droite de Henri

Les faiseurs de pluie

> Question:


- Une société propose un traitement des nuages à base de nitrate d'argent pour augmenter la pluviométrie.
- Quelle est l'efficacité de ce traitement ?

> Protocole expérimental

- Sur 26 nuages choisis au hasard, application du traitement et mesure de la pluviométrie
- Sur 26 autres nuages, choisis au hasard, sans rapport avec les nuages traités, mesure de la pluviométrie

Données

Notation et modélisation

- > x₁, ..., x_n : pluviométries des nuages non traités
- > y₁, ..., y_n : pluviométries des nuages traités

> Hypothèses :

- $x_1, ..., x_n$ sont des réalisations de v.a. $X_1, ..., X_n$, indépendantes et de même loi μ_X
 - Vocabulaire : on dit que $x_1, ..., x_n$ est un **échantillon** de la loi μ_X
- $y_1, ..., y_n$ sont des réalisations de v.a. $Y_1, ..., Y_n$, indépendantes et de même loi μ_Y
- X₁, ..., X_n, Y₁, ..., Y_n sont indépendantes

Reformulation du problème ?

Reformulation du problème

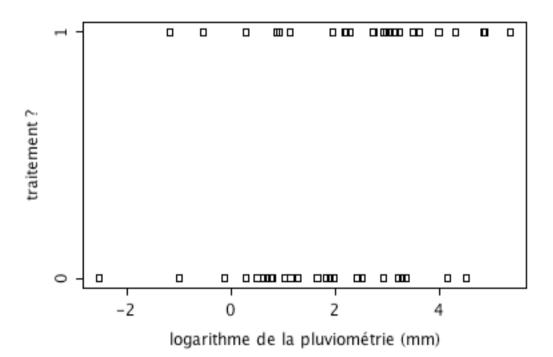
> Le traitement est efficace si :

 Pour tout x, la probabilité pour que la pluviométrie dépasse x est plus grande pour les nuages traités que pour les nuages non traités :

• i.e.
$$P(Y \ge x) > P(X \ge x)$$

• i.e.
$$F_Y(x) < F_X(x)$$

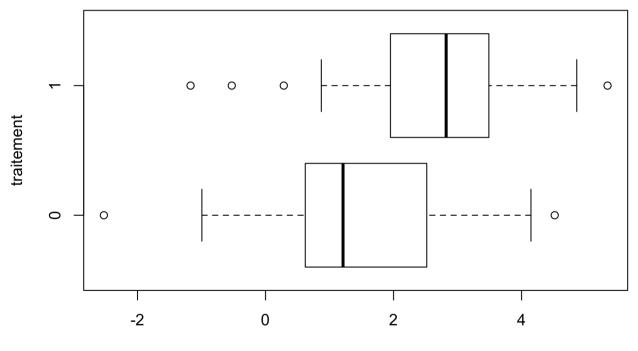
- avec F_X fonction de répartition des X_i, et F_Y fonction de répartition des Y_j
- Si tel est le cas, quel lien peut-on donner entre $F_X(x)$ et $F_Y(x)$?


Quelques indicateurs statistiques

	Sans traitement	Avec traitement
POSITION		
Moyenne	12.5	33.7
Médiane	3.37	16.9
DISPERSION		
Ecart-type	21.2	49.6
q(75%) - q(25%)	10.2	23.5
q(5%)	0.37	0.78
q(95%)	54.5	128.6

Fonction utiles : mean, median, sd, quantile

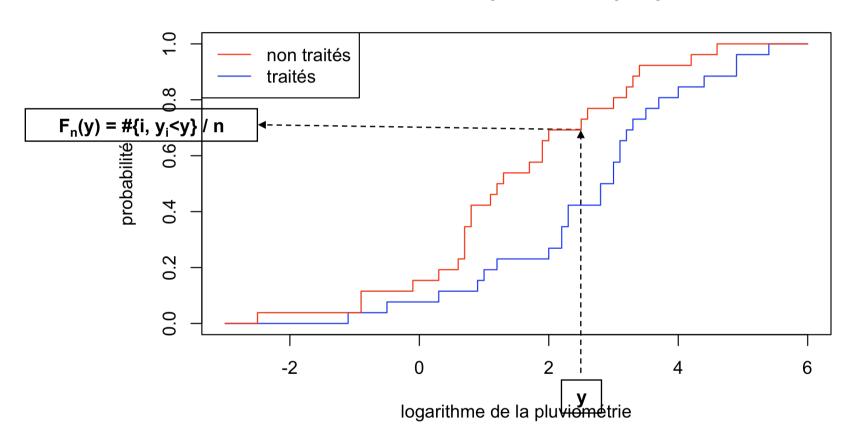
Transformation des données


Indicateurs pour le log

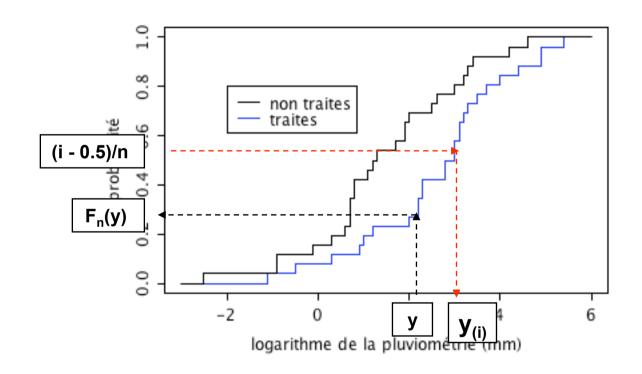
	Sans traitement	Avec traitement
POSITION		
Moyenne	1.42	2.56
Médiane	1.21	2.82
DISPERSION		
Ecart-type	1.64	1.60
q(75%) - q(25%)	1.86	1.42
q(5%)	- 0.99	- 0.32
q(95%)	3.95	4.86

Fonction utiles : mean, median, sd, quantile

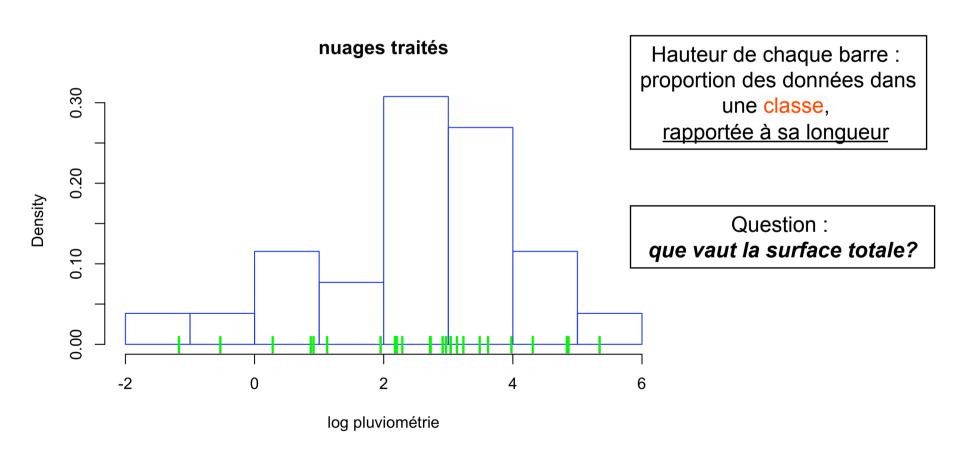
Boxplot (boîte à moustaches)


logarithme de la pluviométrie

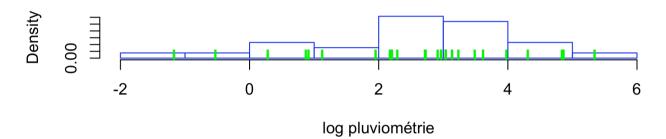
with(data=pluie, boxplot(log(hauteur)~traitement, horizontal=TRUE, range=1,
xlab="logarithme de la pluviométrie (mm)", ylab="traitement?"))

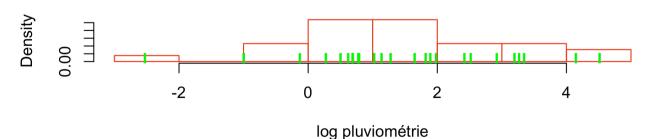

Fonction de répartition empirique

fonctions de répartition empiriques


Quantiles empiriques

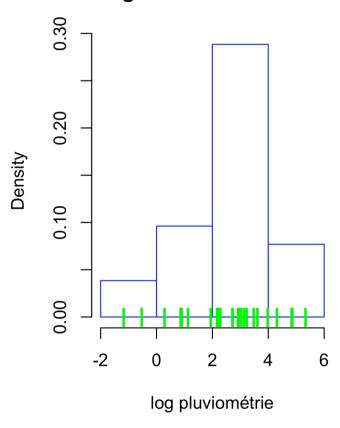
Si : $y_{(1)} \le y_{(2)} \le ... \le y_{(n)}$ sont les données classées dans l'ordre croissant : $y_{(i)} = q((i-0.5)/n)$ quantile empirique d'ordre (i-0.5)/n

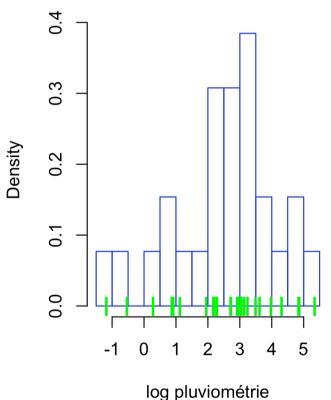

Histogramme



Les deux histogrammes

nuages traités


nuages non traités

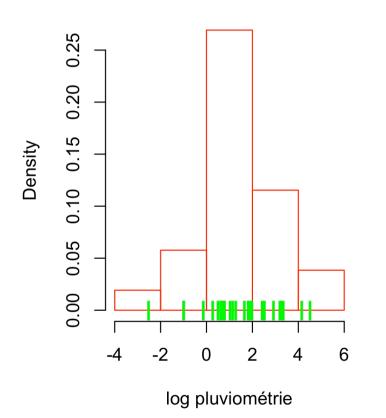


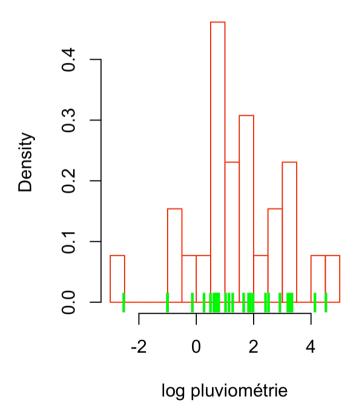
Influence du nombre de classes

nuages traités - 4 classes

nuages traités - 12 classes

Choix à faire:


- -nb classes
- -largeur classes
- -position classes



Idem pour nuages non traités

nuages non traités - 4 classes

nuages non traités - 12 classes

Estimation de densité

- Rappel: $f_X(x) = \frac{P(X \in [x, x + dx])}{dx}$
- > Histogramme: Pour x dans la classe [a,b]

$$f_X(x) \approx \frac{Card\{x_i \in [a,b]\}/n}{b-a}$$
 > Estimation de densité :

$$\hat{f}_X(x) = \frac{Card\{x_i \in [x-h, x+h]\}/n}{2h}$$

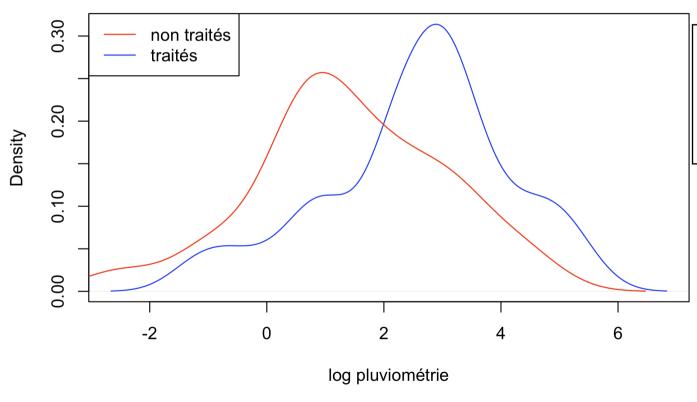
Interprétation (filtrage)

 \triangleright Soit P_n la probabilité empirique :

$$P_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$$

 \triangleright Alors: $\hat{f}_X = K_h * P_n$

$$K_h(x) = 1/h K(x/h)$$
, où $K(u) = 1/2 \ \mathbf{1}_{[-1,1]}(u)$


> Pour K quelconque (densité de probabilité) :

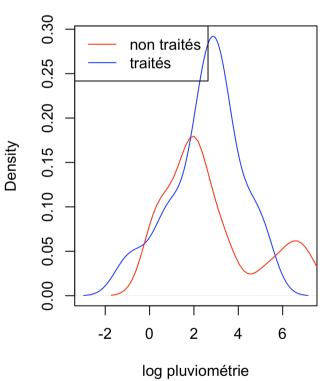
$$\hat{f}_X(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - x_i}{h})$$

Estimation de densité

estimations de densité

Options par défaut

- choix automatique de h
- noyau K gaussien

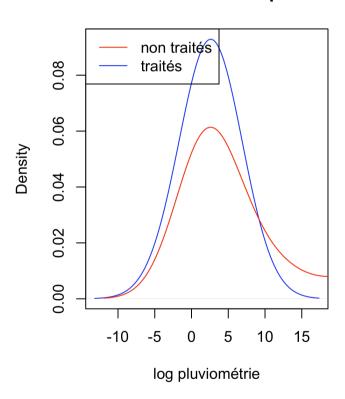


Influence de h (bandwidth)

estimations de densité pour h=0.2

non traités traités 0.3 Density 0.2 0.1 0.0 -2 0 2 6 4 log pluviométrie

estimations de densité pour h=0.6



Influence de h (bandwidth)

estimations de densité pour h=1

estimations de densité pour h=4

Pour terminer?

> Il semble, grosso modo, que $F_{log(Y)}(u) = F_{log(X)}(u-a)$

autrement dit: log(Y) a même loi que log(X)+a

- Peut-on préciser ? Comment savoir si des lois sont égales, à une transformation affine près
 - qq-plot (voir TD)